储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2348-2360.doi: 10.19799/j.cnki.2095-4239.2024.0380
林炜琦1(), 卢巧瑜1, 陈宇鸿1, 邱麟媛1, 季钰榕1, 管联玉1, 丁翔1,2()
收稿日期:
2024-04-29
修回日期:
2024-05-16
出版日期:
2024-07-28
发布日期:
2024-07-23
通讯作者:
丁翔
E-mail:78083010@qq.com;dingx@fjnu.edu.cn
作者简介:
林炜琦(2003—),女,本科生,研究方向为二次电池、储能材料,E-mail:78083010@qq.com;
基金资助:
Weiqi LIN1(), Qiaoyu LU1, Yuhong CHEN1, Linyuan QIU1, Yurong JI1, Lianyu GUAN1, Xiang DING1,2()
Received:
2024-04-29
Revised:
2024-05-16
Online:
2024-07-28
Published:
2024-07-23
Contact:
Xiang DING
E-mail:78083010@qq.com;dingx@fjnu.edu.cn
摘要:
由于钠储量丰富且成本低廉,钠离子电池(SIBs)在大规模储能应用中引起了广泛关注。然而,SIBs在一些高海拔、深海、航空中的应用一直受到低温环境的影响。极端温度下会导致钠离子扩散系数的降低、迁移动力学缓慢、钠枝晶的形成和严重的界面反应,再加上钠的反应容易发生不可逆相变,从而严重降低SIBs的电化学性能和安全性能。因此,正极材料的合理设计和改性对于优化SIBs的低温性能具有重要意义。本文综述了近年来SIBs包括层状金属氧化物、聚阴离子化合物及普鲁士蓝类似物在内的各大正极材料在低温环境下的研究进展:层状氧化物材料在低温下电化学反应过程中经历较多的相变和结构变化,循环寿命受到一定的限制;聚阴离子类材料较大的阴离子基团使得材料的能量密度受到一定的限制;普鲁士蓝类似物高纯度的合成还是低温条件下的一大难题。现有表面包覆、晶格掺杂、结构优化等多种策略可以改善正极材料出现的上述问题。本文还进一步深刻剖析了优越的电化学性能与各种正极材料改性手段之间的构效关系;总结了SIBs低温下的发展现状与挑战,即低温对充放电中动力学反应的极大限制,以及不可避免的正负极材料和电解质之间的相互影响;并提出了自己的一些见解,为推动SIBs正极材料在低温下的进一步发展提供参考。
中图分类号:
林炜琦, 卢巧瑜, 陈宇鸿, 邱麟媛, 季钰榕, 管联玉, 丁翔. 低温钠离子电池正极材料研究进展[J]. 储能科学与技术, 2024, 13(7): 2348-2360.
Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360.
表1
典型SIBs正极材料在低温下的电化学性能"
合成方法 | 材料 | 低温容量/(mAh/g) | 低温循环性能/(mAh/g) | 参考文献 |
---|---|---|---|---|
溶胶-凝胶 | Na0.612K0.056MnO2@Na3Zr2Si2PO12 | 119 | -20 ℃,0.1 A/g,150次,82% | [ |
固相 | Na0.75Mn0.6Ni0.3Cu0.1O2 | 65.7 | -20 ℃,1C,300次,90% | [ |
— | Na0.67Co0.2Mn0.8O2@NaTi2(PO4)3 | 115.1 | -20 ℃,0.5C,150次,92.3% | [ |
固相 | Na0.7[Ni0.3Co0.1Mn0.6]0.98Nb0.02O2 | 63.6 | -20 ℃,0.5C,300次,79.3% | [ |
溶胶-凝胶 | Na0.67Mn0.95Sn0.05O2 | 96.6 | — | [ |
固相 | NaMn0.6Al0.4O2@Al(II, III)O x | 151 | -20 ℃,1 A/g,100次,83.2% | [ |
溶胶-凝胶 | Na0.67Mg0.05Fe x Ni y Mn z O2 | 82 | -15 ℃,2C,100次,88% | [ |
溶剂热 | Na0.67Ni0.2Co0.2Mn0.6O2 | 132.2 | -40 ℃,1C,300次,83.9% | [ |
溶胶-凝胶 | Na0.67Ni0.1Co0.1Mn0.8O2 | 147.7 | -20 ℃,0.5C,100次,70% | [ |
— | Na0.78Ni0.31Mn0.67Nb0.02O2 | 69 | -40 ℃,0.5C,800次,94.5% | [ |
— | Na0.696Ni0.329Mn0.671O2 | 62.6 | -30 ℃,0.5C,100次,95% | [ |
固相 | NaNi0.5Mn0.5-x Sb x O2 | 122.3 | -20 ℃,0.1C,100次,90% | [ |
溶胶-凝胶 | Na3Fe0.8VNi0.2(PO4)3 | 96.3 | — | [ |
静电纺丝 | Na4Fe3(PO4)2P2O7@C | 88.5 | -15 ℃,0.05C,700次,80% | [ |
固相 | Na3.5V1.5Mn0.5(PO4)3@C@3DPG | 105.4 | -20 ℃,1C,500次,97% | [ |
— | NaFePO4@C | 114.1 | -20 ℃,2C,1000次,75.8% | [ |
冷冻干燥 | Na3.9Fe2.9Al0.1(PO4)2P2O7 | 76.2 | -20 ℃,2C,1000次,96.3% | [ |
溶胶-凝胶 | Na2.5VTi0.5Al0.5(PO4)3 | 80 | 0 ℃,5C,1200次,89% | [ |
固相 | Na3-2x Ca x V2(PO4)3 | 112.3 | 0 ℃,1C,500次,96.3% | [ |
溶胶-凝胶 | Na3V1.9Zr0.1(PO4)3/NC | 103.7 | -20 ℃,0.1C,100次,94.4% | [ |
固相 | Na4Fe3(PO4)1.9(SiO4)0.1P2O7 | 95.5 | -10 ℃,5C,1000次,93.6% | [ |
固相 | Na3-x K x V2(PO4)3@C/MWCNT | 64.6 | -20 ℃,20C,500次,84.2% | [ |
— | Na3V1.98Mn0.02(PO4)2F3 | 80 | -25 ℃,1C,400次,96.5% | [ |
辅助水热 | Na3V2(PO4)2F3@rGO/CNT | 106.7 | 0 ℃,1C,200次,97.3% | [ |
— | Na4VMn0.7Ni0.3(PO4)3@C | 82 | -40 ℃,1C,160次,98% | [ |
1 | GU X X, QIAO S, REN X L, et al. Multi-core-shell-structured LiFePO4@Na3V2(PO4)3@C composite for enhanced low-temperature performance of lithium-ion batteries[J]. Rare Metals, 2021, 40(4): 828-836. |
2 | XU S, YAO K, YANG D, et al. Interfacial engineering of Na3V2(PO4)2O2F Cathode for Low-temperature (-40 ℃) sodium-ion batteries[J]. ACS Applied Materials & Interfaces,2023, 15(11): 14329-14338. |
3 | ZHU X B, WANG L Z. Advances in materials for all-climate sodium-ion batteries[J]. EcoMat, 2020, 2(3): e12043. |
4 | XUE Q, LI S Y, ZHAO Y N, et al. Novel alkaline sodium-ion battery capacitor based on active carbon||Na0.44MnO2 towards low cost, high-rate capability and long-term lifespan[J]. Acta Physico Chimica Sinica, 2023: 2303041. |
5 | ZHANG F, HE B J, XIN Y, et al. Emerging chemistry for wide-temperature sodium-ion batteries[J]. Chemical Reviews, 2024, 124(8): 4778-4821. |
6 | CUI G J, WANG H, YU F P, et al. Scalable synthesis of Na3V2(PO4)3/C with high safety and ultrahigh-rate performance for sodium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2022, 46: 280-286. |
7 | SHEVCHENKO V A, KOMAYKO A I, SIVENKOVA E V, et al. Effect of Ni/Fe/Mn ratio on electrochemical properties of the O3-NaNi1- x- yFexMnyO2 (0.25≤x, y≤0.75) cathode materials for Na-ion batteries[J]. Journal of Power Sources, 2024, 596: 234092. |
8 | GAO N S, GUO Y W, CHEN Y H, et al. Improved electrochemical performance of P2-type concentration-gradient cathode material Na0.65Ni0.16Co0.14Mn0.7O2 with Mn-rich core for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 958: 170386. |
9 | ZHOU J K, LIU J, LI Y Y, et al. Reaching the initial coulombic efficiency and structural stability limit of P2/O3 biphasic layered cathode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 638: 758. |
10 | YUAN T, LI S Q, SUN Y Y, et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides[J]. ACS Nano, 2022, 16(11): 18058-18070. |
11 | SHI Q H, QI R J, FENG X C, et al. Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries[J]. Nature Communications, 2022, 13: 3205. |
12 | JIANG N, CHEN L, WANG Y T, et al. Confined construction of porous conductive framework Na3V2(PO4)3 nanocrystals and their ultrahigh rate and microtherm sodium storage performance[J]. Chemical Engineering Science, 2022, 262: 117912. |
13 | ZHOU P F, CHE Z N, LIU J, et al. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries[J]. Energy Storage Materials, 2023, 57: 618-627. |
14 | WANG T Y, SU D W, SHANMUKARAJ D, et al. Electrode materials for sodium-ion batteries: Considerations on crystal structures and sodium storage mechanisms[J]. Electrochemical Energy Reviews, 2018, 1(2): 200-237. |
15 | GAO J Q, ZENG J Y, JIAN W S, et al. Aluminum ion chemistry of Na4Fe3(PO4)2(P2O7) for all-climate full Na-ion battery[J]. Science Bulletin, 2024, 69(6): 772-783. |
16 | YOU Y, YAO H R, XIN S, et al. Subzero-temperature cathode for a sodium-ion battery[J]. Advanced Materials, 2016, 28(33): 7243-7248. |
17 | WANG J Z, TENG Y X, SU G Q, et al. A dual-modification strategy for P2-type layered oxide via bulk Mg/Ti co-substitution and MgO surface coating for sodium ion batteries[J]. Journal of Colloid and Interface Science, 2022, 608(3): 3013-3021. |
18 | HWANG J Y, MYUNG S T, CHOI J U, et al. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(45): 23671-23680. |
19 | MA Z L, XU H X, LIU Y X, et al. Defect-type AlOx nanointerface boosting layered Mn-based oxide cathode for wide-temperature sodium-ion battery[J]. Journal of Materials Chemistry A, 2022, 10(45): 24216-24225. |
20 | SHAO Y Q, WANG X X, LI B C, et al. Functional surface modification of P2-type layered Mn-based oxide cathode by thin layer of NASICON for sodium-ion batteries[J]. Electrochimica Acta, 2023, 442: 141915. |
21 | LI Y, SHI Q H, YIN X P, et al. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage[J]. Chemical Engineering Journal, 2020, 402: 126181. |
22 | LAVELA P, LEYVA J, TIRADO J L. Sustainable, low Ni-containing Mg-doped layered oxides as cathodes for sodium-ion batteries[J]. Dalton Transactions, 2023, 52(46): 17289-17298. |
23 | LI L J, FAN J J, CHEN H, et al. pH-manipulated large-scale synthesis of Na3(VOPO4)2F at low temperature for practical application in sodium ion batteries[J]. New Journal of Chemistry, 2024, 48(10): 4446-4455. |
24 | LI S Y, ZHANG Y Y, LEI K X, et al. Na+/vacancy disordered manganese-based oxide cathode with ultralow strain enabled by tuning charge distribution[J]. Journal of Materials Chemistry A, 2022, 10(19): 10391-10399. |
25 | LI Y, ZHAO Y F, FENG X C, et al. A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries[J]. Science China Materials, 2022, 65(2): 328-336. |
26 | WANG X, YIN X P, FENG X C, et al. Rational design of Na0.67Ni0.2Co0.2Mn0.6O2 microsphere cathode material for stable and low temperature sodium ion storage[J]. Chemical Engineering Journal, 2022, 428: 130990. |
27 | YUE R Y, XIA F, QI R J, et al. Trace Nb-doped Na0.7Ni0.3Co0.1Mn0.6O2 with suppressed voltage decay and enhanced low temperature performance[J]. Chinese Chemical Letters, 2021, 32(2): 849-853. |
28 | LIU S, WAN J, OU M, ZHANG W, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries[J]. Advanced Energy Materials,2023, 13(11): 2203521. |
29 | WANG Q D, ZHOU D, ZHAO C L, et al. Fast-charge high-voltage layered cathodes for sodium-ion batteries[J]. Nature Sustainability, 2024, 7: 338-347. |
30 | HU X F, GUO H, GAO J X, et al. Component regulatory strategy for advanced biphasic sodium layered oxide cathodes[J]. ACS Applied Energy Materials, 2024, 7(2): 460-468. |
31 | DUAN Y, MA Z H, WAN Q X, et al. Optimizing electrochemical performance of Na0.67Ni0.17Co0.17Mn0.66O2 with P2 structure via preparing concentration-gradient particles for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2024, 662: 69-75. |
32 | FU H, LI J L, WANG L Y, et al. Na-rich layered transition metal oxides with core/shell structures for improved performance of sodium-ion batteries[J]. The Journal of Physical Chemistry C, 2022, 126(48): 20196-20203. |
33 | LI J B, LI Z Q, TANG S C, et al. Boosted electrochemical performance of Na3V2(PO4)3 at low temperature through synergistical F substitution and construction of interconnected nitrogen-doped carbonaceous network[J]. Journal of Materials Science & Technology, 2023, 150: 159-167. |
34 | LIU B Q, ZHANG Q, LI L, et al. Achieving highly electrochemically active maricite NaFePO4 with ultrafine NaFePO4@C subunits for high rate and low temperature sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 405: 126689. |
35 | ZHAO L J, LIU X H, LI J S, et al. One-step synthesis of three-dimensional Na3V2(PO4)3/carbon frameworks as promising sodium-ion battery cathode[J]. Nanomaterials, 2023, 13(3): 446. |
36 | LI Z C, SUN C, LI M, et al. Na2.5VTi0.5Al0.5(PO4)3 as long lifespan cathode for fast charging sodium-ion batteries[J]. Advanced Functional Materials, 2024: 2315114. |
37 | LI J B, LI Z Q, TANG S C, et al. Improved electrode kinetics of a modified Na3V2(PO4)3 cathode through Zr substitution and nitrogen-doped carbon coating towards robust electrochemical performance at low temperature[J]. Inorganic Chemistry Frontiers, 2022, 9(19): 4962-4973. |
38 | YU H, RUAN X P, WANG J J, et al. From solid-solution MXene to Cr-substituted Na3V2(PO4)3: Breaking the symmetry of sodium ions for high-voltage and ultrahigh-rate cathode performance[J]. ACS Nano, 2022, 16(12): 21174-21185. |
39 | ZHANG J H, TANG L B, ZHANG Y, et al. Polyvinylpyrrolidone assisted synthesized ultra-small Na4Fe3(PO4)2(P2O7) particles embedded in 1D carbon nanoribbons with enhanced room and low temperature sodium storage performance[J]. Journal of Power Sources, 2021, 498: 229907. |
40 | LI Z, ZHANG Y, ZHANG J H, et al. Sodium-ion battery with a wide operation-temperature range from -70 to 100 ℃[J]. Angewandte Chemie International Edition, 2022, 61(13): 2116930. |
41 | LIU S Y, WAN J, OU M Y, et al. Regulating Na occupation in P2-type layered oxide cathode for all-climate sodium-ion batteries[J]. Advanced Energy Materials, 2023, 13(11): 2203521. |
42 | SHEN L, LI Y, HU C, et al. A high-rate cathode material based on potassium-doped Na3V2(PO4)3 for high/low-temperature sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101506. |
43 | GU Z Y, GUO J Z, SUN Z H, et al. Aliovalent-ion-induced lattice regulation based on charge balance theory: Advanced fluorophosphate cathode for sodium-ion full batteries[J]. Small, 2021, 17(32): 2102010. |
44 | XU S T, ZHU W S, YANG Y, et al. Bimetal-substituted polyanion cathode for sodium-ion batteries: Less vanadium and boosted low-temperature kinetics[J]. Small Structures, 2024, 5(5): 2300369. |
45 | ZHAO Q Y, LI J Y, CHEN M J, et al. Bimetal substitution enabled energetic polyanion cathode for sodium-ion batteries[J]. Nano Letters, 2022, 22(23): 9685-9692. |
46 | CHEN P, WU C Y, WANG Z Y, et al. Synergistically boosting sodium-storage performance of Na3V2(PO4)3 by regulating Na sites and constructing 3D interconnected carbon nanosheet frameworks[J]. ACS Applied Energy Materials, 2022, 5(2): 2542-2552. |
47 | GE X C, HE L, GUAN C H, et al. Anion substitution strategy toward an advanced NASICON-Na4Fe3(PO4)2P2O7 cathode for sodium-ion batteries[J]. ACS Nano, 2024, 18(2): 1714-1723. |
48 | YUE L F, WANG J, LI M X, et al. Conductive Ti3C2Tx networks to optimize Na3V2O2(PO4)2F cathodes for improved rate capability and low-temperature operation[J]. Dalton Transactions, 2023, 52(15): 4717-4727. |
49 | LI J B, YUAN Q, HAO J J, et al. Boosted redox kinetics enabling Na3V2(PO4)3 with excellent performance at low temperature through cation substitution and multiwalled carbon nanotube cross-linking[J]. Inorganic Chemistry, 2023, 62(43): 17745-17755. |
50 | LONG T, CHEN P, FENG B, et al. Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode[J]. Chinese Chemical Letters, 2024, 35(4): 109267. |
51 | SHI C L, XU J L, TAO T, et al. Zero-strain Na3V2(PO4)2F3 @Rgo/CNT composite as a wide-temperature-tolerance cathode for Na-ion batteries with ultrahigh-rate performance[J]. Small Methods, 2024, 8(3): e2301277. |
52 | REN K R, WANG J C, TIAN S H, et al. Iron-based Prussian blue coupled with polydopamine film for advanced sodium-ion batteries[J]. Materials Research Bulletin, 2023, 166: 112351. |
53 | SYED MOHD FADZIL S A F, WOO H J, AZZAHARI A D, et al. Sodium-rich Prussian blue analogue coated by poly(3, 4-ethylenedioxythiophene) polystyrene sulfonate as superior cathode for sodium-ion batteries[J]. Materials Today Chemistry, 2023, 30: 101540. |
54 | ZHANG L L, CHEN Z Y, FU X Y, et al. Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue[J]. Chemical Engineering Journal, 2022, 433: 133739. |
55 | MA X H, WEI Y Y, WU Y D, et al. High crystalline Na2Ni[Fe(CN)6]particles for a high-stability and low-temperature sodium-ion batteries cathode[J]. Electrochimica Acta, 2019, 297: 392-397. |
56 | WEI C, FU X Y, ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal, 2021, 421: 127760. |
57 | PENG J, ZHANG B, HUA W B, et al. A disordered Rubik's cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan[J]. Angewandte Chemie (International Ed in English), 2023, 62(6): e202215865. |
58 | ZHANG Q, FU L, LUAN J Y, et al. Surface engineering induced core-shell Prussian blue@polyaniline nanocubes as a high-rate and long-life sodium-ion battery cathode[J]. Journal of Power Sources, 2018, 395: 305-313. |
59 | REN W H, QIN M S, ZHU Z X, et al. Activation of sodium storage sites in Prussian blue analogues via surface etching[J]. Nano Letters, 2017, 17(8): 4713-4718. |
60 | LIM C Q X, WANG T, ONG E W Y, et al. High-capacity sodium–prussian blue rechargeable battery through chelation-induced nano-porosity[J]. Advanced Materials Interfaces, 2020, 7(21): 2000853. |
61 | LUO Y, PENG J Y, YAN Y W. Self-induced cobalt-derived hollow structure Prussian blue as a cathode for sodium-ion batteries[J]. RSC Advances, 2021, 11(50): 31827-31833. |
62 | HU H, LIU W F, ZHU M L, et al. Yolk-shell Prussian blue nanoparticles with fast ion diffusion for sodium-ion battery[J]. Materials Letters, 2019, 249: 206-209. |
[1] | 陈晓羽, 刘宇, 白一帆, 应佳俊, 吕营, 万利佳, 胡军平, 陈小玲. 镍钴氢氧化物正极材料制备及镍锌电池性能研究[J]. 储能科学与技术, 2024, 13(7): 2377-2385. |
[2] | 谭仕荣, 尹文骥, 曾翠鸿, 黎小琼, 訚硕, 纪方力, 胡思江, 王红强, 李庆余. 高温淬火对钠离子电池锰基层状正极材料结构和性能的影响[J]. 储能科学与技术, 2024, 13(7): 2399-2406. |
[3] | 王美龙, 薛煜瑞, 胡文茜, 杜可遇, 孙瑞涛, 张彬, 尤雅. 低温磷酸铁锂电池用全醚高熵电解液的设计研究[J]. 储能科学与技术, 2024, 13(7): 2131-2140. |
[4] | 徐雄文, 莫英, 周望, 姚环东, 洪娟, 雷化, 涂健, 刘继磊. 硬碳动力学特性对钠离子电池低温性能的影响及机制[J]. 储能科学与技术, 2024, 13(7): 2141-2150. |
[5] | 王文涛, 魏一凡, 黄鲲, 吕国伟, 张思瑶, 唐昕雅, 陈泽彦, 林清源, 母志鹏, 王昆桦, 才华, 陈军. 低温锂离子电池测试标准及研究进展[J]. 储能科学与技术, 2024, 13(7): 2300-2307. |
[6] | 赵飞, 陈英华, 马征, 李茜, 明军. 钾离子电池低温电解质的研究进展[J]. 储能科学与技术, 2024, 13(7): 2308-2316. |
[7] | 王立锋, 任乃青, 杨海, 姚雨, 余彦. 低温钠离子电池电解液研究进展[J]. 储能科学与技术, 2024, 13(7): 2206-2223. |
[8] | 郝峻丰, 朱璟, 申晓宇, 岑官骏, 乔荣涵, 张新新, 田孟羽, 金周, 詹元杰, 孙蔷馥, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.04.01—2024.05.31)[J]. 储能科学与技术, 2024, 13(7): 2361-2376. |
[9] | 汪书苹, 杨献坤, 李昌豪, 曾子琪, 程宜风, 谢佳. 乙基膦酸二乙酯基阻燃宽温域电解液在锂离子电池中的应用[J]. 储能科学与技术, 2024, 13(7): 2161-2170. |
[10] | 李丹, 马铁, 刘汉浩, 郭丽. 高倍率钠离子电池炭包覆纳米铋负极材料[J]. 储能科学与技术, 2024, 13(6): 1775-1785. |
[11] | 冯仁超, 董宇, 朱新宇, 刘偲, 陈胜, 李达, 郭若禹, 王斌, 王炯辉, 李宁, 苏岳锋, 吴锋. 钠离子电池氧化石墨基负极研究进展[J]. 储能科学与技术, 2024, 13(6): 1835-1848. |
[12] | 所聪, 王阳峰, 朱紫宸, 杨雁. 钠离子电池软碳基负极的研究进展[J]. 储能科学与技术, 2024, 13(6): 1807-1823. |
[13] | 刘青宜. 钠离子电池的储能机制与性能提升策略[J]. 储能科学与技术, 2024, 13(6): 1871-1873. |
[14] | 李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515. |
[15] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||