储能科学与技术 ›› 2024, Vol. 13 ›› Issue (7): 2348-2360.doi: 10.19799/j.cnki.2095-4239.2024.0380

• 低温电池专刊 • 上一篇    下一篇

低温钠离子电池正极材料研究进展

林炜琦1(), 卢巧瑜1, 陈宇鸿1, 邱麟媛1, 季钰榕1, 管联玉1, 丁翔1,2()   

  1. 1.福建师范大学化学与材料学院,福建 福州 350007
    2.福州大学化学学院先进无机含氧材料福建省重点实验室,福建 福州 350108
  • 收稿日期:2024-04-29 修回日期:2024-05-16 出版日期:2024-07-28 发布日期:2024-07-23
  • 通讯作者: 丁翔 E-mail:78083010@qq.com;dingx@fjnu.edu.cn
  • 作者简介:林炜琦(2003—),女,本科生,研究方向为二次电池、储能材料,E-mail:78083010@qq.com
  • 基金资助:
    国家自然科学基金(52102216);福建省自然科学基金(2022J01625);大学生创新训练计划(202310394020)

Advances in cathode materials for low-temperature sodium-ion batteries

Weiqi LIN1(), Qiaoyu LU1, Yuhong CHEN1, Linyuan QIU1, Yurong JI1, Lianyu GUAN1, Xiang DING1,2()   

  1. 1.College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
    2.Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
  • Received:2024-04-29 Revised:2024-05-16 Online:2024-07-28 Published:2024-07-23
  • Contact: Xiang DING E-mail:78083010@qq.com;dingx@fjnu.edu.cn

摘要:

由于钠储量丰富且成本低廉,钠离子电池(SIBs)在大规模储能应用中引起了广泛关注。然而,SIBs在一些高海拔、深海、航空中的应用一直受到低温环境的影响。极端温度下会导致钠离子扩散系数的降低、迁移动力学缓慢、钠枝晶的形成和严重的界面反应,再加上钠的反应容易发生不可逆相变,从而严重降低SIBs的电化学性能和安全性能。因此,正极材料的合理设计和改性对于优化SIBs的低温性能具有重要意义。本文综述了近年来SIBs包括层状金属氧化物、聚阴离子化合物及普鲁士蓝类似物在内的各大正极材料在低温环境下的研究进展:层状氧化物材料在低温下电化学反应过程中经历较多的相变和结构变化,循环寿命受到一定的限制;聚阴离子类材料较大的阴离子基团使得材料的能量密度受到一定的限制;普鲁士蓝类似物高纯度的合成还是低温条件下的一大难题。现有表面包覆、晶格掺杂、结构优化等多种策略可以改善正极材料出现的上述问题。本文还进一步深刻剖析了优越的电化学性能与各种正极材料改性手段之间的构效关系;总结了SIBs低温下的发展现状与挑战,即低温对充放电中动力学反应的极大限制,以及不可避免的正负极材料和电解质之间的相互影响;并提出了自己的一些见解,为推动SIBs正极材料在低温下的进一步发展提供参考。

关键词: 钠离子电池, 低温性能, 正极材料, 改性研究

Abstract:

Sodium-ion batteries (SIBs) have attracted much attention for large-scale energy storage applications due to the abundant sodium reserves and low cost. However, their use in high-altitude, deep-sea, and aerospace applications has been affected by the low-temperature environment. Extreme temperatures lead to a decrease in the diffusion coefficient of the sodium ion, slow migration kinetics, formation of sodium dendrites, and severe interfacial reactions. This, coupled with the tendency of sodium reactions to undergo irreversible phase transitions, can seriously degrade the electrochemical and safety performance of SIBs. Therefore, the rational design and modification of cathode materials are crucial for optimizing the low-temperature performance of SIBs. In this work, the research progress of relevant cathode materials for SIBs, including layered metal oxides, polyanionic compounds, and Prussian blue analogs in low-temperature environments is summarized. Layered metal oxide materials undergo further phase and structural changes during electrochemical reactions at low temperatures, thus their life cycle is somewhat limited. The large anionic groups of polyanionic materials limits the energy density of the materials. The synthesis of high-purity Prussian blue analogs remains a major challenge under low-temperature conditions. Existing strategies, such as surface coating, lattice doping, and structure optimization, can ameliorate the issues mentioned above. In addition, an analysis of the relationship between superior electrochemical performance and the modification of cathode materials is presented. A summary of the status and challenges of the development of SIBs at low temperatures is provided. The great limitations of low temperature on the kinetics during charging and discharging, as well as the unavoidable interaction between positive and negative electrode materials and electrolyte remain the most relevant challenges. This review will provide a reference for further development of SIBs cathode materials at low temperatures.

Key words: sodium ion batteries, low temperature performance, cathode materials, modification research

中图分类号: