1 |
USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6: 1020-1035. DOI: 10.1038/s41578-021-00324-w.
|
2 |
LI Y, LAI X Q, QU J P, et al. Research progress in regulation strategies of high-performance antimony-based anode materials for sodium ion batteries[J]. Acta Physico Chimica Sinica, 2022, 38(11): 2204049. DOI: 10.3866/pku.whxb202204049.
|
3 |
LU Z X, WANG W X, ZHOU J, et al. FeS2@C nanorods embedded in three-dimensional graphene as high-performance anode for sodium-ion batteries[J]. Frontiers of Materials Science, 2020, 14(3): 255-265. DOI: 10.1007/s11706-020-0510-z.
|
4 |
LU Z X, WANG N N, ZHANG Y H, et al. Metal-organic framework-derived sea-cucumber-like FeS2@C nanorods with outstanding pseudocapacitive Na-ion storage properties[J]. ACS Applied Energy Materials, 2018, 1(11): 6234-6241. DOI: 10.1021/acsaem.8b01239.
|
5 |
QIAO S Y, ZHOU Q W, MA M, et al. Advanced anode materials for rechargeable sodium-ion batteries[J]. ACS Nano, 2023, 17(12): 11220-11252. DOI: 10.1021/acsnano.3c02892.
|
6 |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4): 18013. DOI: 10.1038/natrevmats.2018.13.
|
7 |
ZHANG S G, ZHAO H P, MA W Y, et al. Insight to Se-doping effects on Fe7S8/carbon nanotubes composite as anode for sodium-ion batteries[J]. Journal of Power Sources, 2022, 536: 231458. DOI: 10.1016/j.jpowsour.2022.231458.
|
8 |
GABRIEL E, MA C R, GRAFF K, et al. Heterostructure engineering in electrode materials for sodium-ion batteries: Recent progress and perspectives[J]. eScience, 2023, 3(5): 100139. DOI: 10.1016/j.esci.2023.100139.
|
9 |
FU F, LIU X, FU X G, et al. Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries[J]. Nature Communications, 2022, 13(1): 2826. DOI: 10.1038/s41467-022-30113-0.
|
10 |
LU Z X, ZHAI Y J, WANG N N, et al. FeS2 nanoparticles embedded in N/S Co-doped porous carbon fibers as anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2020, 380: 122455. DOI: 10.1016/j.cej.2019.122455.
|
11 |
LU Z X, WANG W X, ZHOU J, et al. FeS2@TiO2 nanorods as high-performance anode for sodium ion battery[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2699-2706. DOI: 10.1016/j.cjche.2020.07.011.
|
12 |
GANESAN V, KIM D H, NAM K H, et al. Robust nanocube framework CoS2-based composites as high-performance anodes for Li- and Na-ion batteries[J]. Composites Part B: Engineering, 2022, 231: 109592. DOI: 10.1016/j.compositesb.2021.109592.
|
13 |
CHOI J, YOON S U, LEE M E, et al. High-performance nanohybrid anode based on FeS2 nanocubes and nitrogen-rich graphene oxide nanoribbons for sodium ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 61-66. DOI: 10.1016/j.jiec.2019.08.059.
|
14 |
ZHANG K, PARK M, ZHOU L M, et al. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(41): 12822-12826. DOI: 10.1002/anie.201607469.
|
15 |
YANG D C, YADAV D, JEON I, et al. Enhanced high-rate capability and long cycle stability of FeS@NCG nanofibers for sodium-ion battery anodes[J]. ACS Applied Materials & Interfaces, 2022, 14(39): 44303-44316. DOI: 10.1021/acsami.2c11046.
|
16 |
XIAO X, LI J C, MENG X T, et al. Sulfur-doped carbon-coated Fe0.95S1.05 nanospheres as anodes for high-performance sodium storage[J]. Acta Physico Chimica Sinica, 2023: 2307006. DOI: 10.3866/pku.whxb202307006.
|
17 |
JE J, LIM H, JUNG H W, et al. Ultrafast and ultrastable heteroarchitectured porous nanocube anode composed of CuS/FeS2 embedded in nitrogen-doped carbon for use in sodium-ion batteries[J]. Small, 2022, 18(6): e2105310. DOI: 10.1002/smll.202105310.
|
18 |
CHEN H Y, YANG X T, LV P F, et al. Mn-doped FeS with larger lattice spacing as advance anode for sodium ion half/full battery[J]. Chemical Engineering Journal, 2022, 450: 137960. DOI: 10.1016/j.cej.2022.137960.
|
19 |
RUAN J F, LUO S N, WANG S F, et al. Enhancing the whole migration kinetics of Na+ in the anode side for advanced ultralow temperature sodium-ion hybrid capacitor[J]. Advanced Energy Materials, 2023, 13(34): 2301509. DOI: 10.1002/aenm.202301509.
|
20 |
WU X L, ZHAO H Q, XU J M, et al. Rational synthesis of marcacite FeS2 hollow microspheres for high-rate and long-life sodium ion battery anode[J]. Journal of Alloys and Compounds, 2020, 825: 154173. DOI: 10.1016/j.jallcom.2020.154173.
|
21 |
YAN Z, SUN Z, ZHAO L, et al. In-situ induced sulfur vacancy from phosphorus doping in FeS2 microflowers for high-efficiency lithium storage[J]. Materials Today Nano, 2022, 20: 100261. DOI: 10.1016/j.mtnano.2022.100261.
|
22 |
HU Z L, CUI H Q, ZHU Y R, et al. Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries[J]. Journal of Power Sources, 2022, 536: 231438. DOI: 10.1016/j.jpowsour.2022.231438.
|
23 |
SONG P H, YANG J, WANG C Y, et al. Interface engineering of Fe7S8/FeS2 heterostructure in situ encapsulated into nitrogen-doped carbon nanotubes for high power sodium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 118. DOI: 10.1007/s40820-023-01082-w.
|
24 |
YUAN B X, LUAN W L, TU S T, et al. One-step synthesis of pure pyrite FeS2 with different morphologies in water[J]. New Journal of Chemistry, 2015, 39(5): 3571-3577. DOI: 10.1039/C4NJ02243B.
|
25 |
KAR S, CHAUDHURI S. Solvothermal synthesis of nanocrystalline FeS2 with different morphologies[J]. Chemical Physics Letters, 2004, 398(1/2/3): 22-26. DOI: 10.1016/j.cplett.2004.09.028.
|
26 |
ZHANG Z W, ZHONG X B, ZHANG Y H, et al. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries[J]. Rare Metals, 2022, 41(1): 21-28. DOI: 10.1007/s12598-021-01835-9.
|
27 |
WEN Y, SUN Q Q, GAO J Y, et al. Construction of small FeS2 nanoparticles embedded in porous nitrogen-doped carbon with enhanced sodium ion storage properties[J]. Journal of Electronic Materials, 2023, 52(8): 5199-5209. DOI: 10.1007/s11664-023-10503-w.
|
28 |
YUE L C, SONG W, WU Z G, et al. Constructing FeS2/TiO2 p-n heterostructure encapsulated in one-dimensional carbon nanofibers for achieving highly stable sodium-ion battery[J]. Chemical Engineering Journal, 2023, 455: 140824. DOI: 10.1016/j.cej.2022.140824.
|
29 |
ZHANG S G, YIN G Y, ZHAO H P, et al. Facile synthesis of carbon nanofiber confined FeS2/Fe2O3 heterostructures as superior anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry C, 2021, 9(8): 2933-2943. DOI: 10.1039/D0TC05519K.
|
30 |
WU Y, WANG Y Y, SHAO S Q, et al. Transformation of two-dimensional iron sulfide nanosheets from FeS2 to FeS as high-rate anodes for pseudocapacitive sodium storage[J]. ACS Applied Energy Materials, 2020, 3(12): 12672-12681. DOI: 10.1021/acsaem.0c02590.
|
31 |
陈珂君, 范利君. 钴掺杂FeS2的可控制备及储钠特性研究[J]. 储能科学与技术, 2023, 12(10): 3056-3063. DOI: 10.19799/j.cnki.2095-4239.2023.0391.
|
|
CHEN K J, FAN L J. Controllable synthesis of Co2+-doped FeS2 and their sodium storage performances[J]. Energy Storage Science and Technology, 2023, 12(10): 3056-3063. DOI: 10.19799/j.cnki.2095-4239.2023.0391.
|
32 |
钮准, 张学燕, 冯佳伟, 等. FeSe2-C三维导电复合材料的制备及其电化学性能[J]. 储能科学与技术, 2022, 11(11): 3470-3477. DOI: 10.19799/j.cnki.2095-4239.2022.0357.
|
|
NIU Z, ZHANG X Y, FENG J W, et al. Preparation and electrochemical properties of FeSe2-C three-dimensional conductive composites[J]. Energy Storage Science and Technology, 2022, 11(11): 3470-3477. DOI: 10.19799/j.cnki.2095-4239.2022.0357.
|
33 |
LIU Q, ZHANG S J, XIANG C C, et al. Cubic MnS-FeS2 composites derived from a Prussian blue analogue as anode materials for sodium-ion batteries with long-term cycle stability[J]. ACS Applied Materials & Interfaces, 2020, 12(39): 43624-43633. DOI: 10.1021/acsami.0c10874.
|
34 |
ZHANG D M, JIA J H, YANG C C, et al. Fe7Se8 nanoparticles anchored on N-doped carbon nanofibers as high-rate anode for sodium-ion batteries[J]. Energy Storage Materials, 2020, 24: 439-449. DOI: 10.1016/j.ensm.2019.07.017.
|
35 |
LIM H, KIM S, KIM J H, et al. Carbon shell-coated mackinawite FeS platelets as anode materials for high-performance sodium-ion batteries[J]. Chemical Engineering Journal, 2023, 458: 141354. DOI: 10.1016/j.cej.2023.141354.
|
36 |
ZHOU X Y, WANG Z W, WANG Y J, et al. Graphene supported FeS2 nanoparticles with sandwich structure as a promising anode for high-rate potassium-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 636: 73-82. DOI: 10.1016/j.jcis.2022.12.168.
|