1 |
李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239. 2020-0050.
|
|
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. DOI: 10.19799/j.cnki.2095-4239.2020-0050.
|
2 |
杨续来, 张峥, 曹勇, 等. 高能量密度锂离子电池结构工程化技术探讨[J]. 储能科学与技术, 2020, 9(4): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2020-0147.
|
|
YANG X L, ZHANG Z, CAO Y, et al. The structural engineering for achieving high energy density Li-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(4): 1127-1136. DOI: 10.19799/j.cnki.2095-4239.2020-0147.
|
3 |
PIAO N, GAO X N, YANG H C, et al. Challenges and development of lithium-ion batteries for low temperature environments[J]. eTransportation, 2022, 11: 100145. DOI: 10. 1016/j.etran.2021.100145.
|
4 |
ZHANG X H, WANG D H, QIU X Y, et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation[J]. Nature Communications, 2020, 11(1): 3826. DOI: 10.1038/s41467-020-17686-4.
|
5 |
LI Y, LIU X, WANG L, et al. Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials[J]. Nano Energy, 2021, 85: 105878. DOI: 10.1016/j.nanoen. 2021.105878.
|
6 |
FENG X N, ZHENG S Q, REN D S, et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database[J]. Applied Energy, 2019, 246: 53-64. DOI: 10.1016/j.apenergy.2019.04.009.
|
7 |
张若涛, 李蒙, 刘艳侠, 等. 长寿命高倍率锂离子电池的开发及工艺优化[J]. 电池, 2021, 51(1): 59-62. DOI: 10.19535/j.1001-1579. 2021.01.015.
|
|
ZHANG R T, LI M, LIU Y X, et al. Development and technology optimization of long-life high rate Li-ion battery[J]. Battery Bimonthly, 2021, 51(1): 59-62. DOI: 10.19535/j.1001-1579. 2021.01.015.
|
8 |
曹铭津, 邱钟明, 章勇. 无人机用聚合物锂离子电池的研制[J]. 电池, 2017, 47(2): 101-104. DOI: 10.19535/j.1001-1579.2017.02.010.
|
|
CAO M J, QIU Z M, ZHANG Y. Development of polymer Li-ion battery used for unmanned aerial vehicle[J]. Battery Bimonthly, 2017, 47(2): 101-104. DOI: 10.19535/j.1001-1579.2017.02.010.
|
9 |
高桂红, 李珅珅, 刘福园, 等. 颗粒级配对锂浆料电池性能的影响[J]. 储能科学与技术, 2023, 12(2): 329-338. DOI: 10.19799/j.cnki.2095-4239.2022.0537.
|
|
GAO G H, LI S S, LIU F Y, et al. Study on the influence of particle composition on the performance of lithium slurry batteries[J]. Energy Storage Science and Technology, 2023, 12(2): 329-338. DOI: 10.19799/j.cnki.2095-4239.2022.0537.
|
10 |
赵彦孛, 胡蝶, 刘艺琳, 等. 极片层数对锂离子电池性能的影响[J]. 电池, 2022, 52(5): 534-537. DOI: 10.19535/j.1001-1579.2022.05.013.
|
|
ZHAO Y B, HU D, LIU Y L, et al. Effect of electrode layers on the performance of Li-ion battery[J]. Battery Bimonthly, 2022, 52(5): 534-537. DOI: 10.19535/j.1001-1579.2022.05.013.
|
11 |
刘艳侠, 李蒙, 张治博, 等. 一种提升锂电池安全性的顶封封头结构及锂电池: CN214505571U[P]. 2021-10-26.
|