储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3657-3665.doi: 10.19799/j.cnki.2095-4239.2025.0298

• 储能材料与器件 • 上一篇    下一篇

石墨与锂金属负极对混合固液锂离子电池短路与针刺安全性的影响

乔荣涵1(), 桑林2, 张中洋3, 姚霞银1(), 刘兴江2(), 俞海龙3   

  1. 1.中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
    2.中国电子科技集团公司第十八研究所,天津 300392
    3.中国科学院物理研究所,北京 100190
  • 收稿日期:2025-03-27 修回日期:2025-04-11 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 姚霞银,刘兴江 E-mail:qiaoronghan@nimte.ac.cn;yaoxy@nimte.ac.cn;xjliu@nklps.org
  • 作者简介:乔荣涵(1998—),男,博士,研究方向为高能量密度锂离子电池,E-mail:qiaoronghan@nimte.ac.cn

Graphite vs. lithium metal anodes: Safety of hybrid solid-liquid lithium batteries under short circuit and nail penetration

Ronghan QIAO1(), Lin SANG2, Zhongyang ZHANG3, Xiayin YAO1(), Xingjiang LIU2(), Hailong YU3   

  1. 1.Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
    2.The 18th Research Institute of China Electronics Technology Group Corporation, Tianjin 300392, China
    3.Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2025-03-27 Revised:2025-04-11 Online:2025-10-28 Published:2025-10-20
  • Contact: Xiayin YAO, Xingjiang LIU E-mail:qiaoronghan@nimte.ac.cn;yaoxy@nimte.ac.cn;xjliu@nklps.org

摘要:

锂离子电池已广泛应用,但安全性仍是制约其性能提升和应用拓展的关键。本研究聚焦负极材料对三元软包电池热失控路径的影响,对比石墨与锂金属负极在针刺及外部短路测试中的安全响应。通过同步监测温度、电压、电流等关键参数并结合电池拆解分析,研究发现负极特性从根本上决定了电池的失效机制。在外部短路中,锂金属负极的高反应活性及其循环后表面形成的粉末状沉积锂加剧了副反应放热,导致其瞬时电流(148.7 A vs. 100.9 A)和最高温度(273 ℃ vs. 104 ℃)远超石墨负极,表现出更高的热失控风险。然而,在针刺测试中,锂金属负极却展现出安全优势。针刺造成的局部熔融,以及伴随的物理脱离与快速化学钝化,共同使接触电阻上升至超过40 Ω,有效阻断了持续短路,从而避免热失控。相反,石墨负极因其刚性结构维持短路通路,引发剧烈放热,温度变化速率峰值超过420 ℃/s。本研究揭示了负极材料与热失效行为的构效关系,为通过负极改性开发兼具高能量密度和高安全性的金属锂负极二次电池提供新思路。

关键词: 锂离子电池, 锂金属, 针刺, 短路, 热失控

Abstract:

Although lithium-ion batteries are widely adopted, their safety remains a critical bottleneck that limits further technological advancement. This study investigates how anode materials influence the thermal runaway pathways of ternary pouch cells by examining the safety responses of graphite and lithium metal anodes under nail penetration and external short-circuit conditions. By simultaneously monitoring key parameters, including temperature, voltage, current, and analyzing electrode interface morphology and contact status, this study demonstrates that anode properties fundamentally affect failure mechanisms during thermal events. In external short-circuit tests, the highly reactive lithium metal anode, together with powdery lithium deposits formed after cycling, exacerbates exothermic side reactions, resulting in significantly higher peak currents (148.7 A vs. 100.9 A) and maximum temperatures (273 ℃ vs. 104 ℃) than those observed with graphite anode, indicating a substantially greater risk of thermal runaway. Conversely, lithium metal anodes exhibit superior safety performance during nail penetration tests. Localized melting at the penetration site, along with subsequent physical detachment and rapid chemical passivation, leads to a sharp increase in contact resistance (>40 Ω), which effectively interrupting interrupts the internal short circuit and prevents thermal runaway. In contrast, the rigid structure of graphite anodes maintains the short-circuit pathway, causing rapid heat accumulation, with peak temperature rates exceeding 420 ℃/s. Overall, this study reveals the structure-property-failure relationship between anode materials and their associated thermal behaviors, providing valuable insights for the design of lithium batteries that combine high energy density with enhanced safety through targeted anode modification.

Key words: lithium-ion battery, lithium metal, nail penetration, short circuit, thermal runaway

中图分类号: