[1] |
中国汽车工业协会, 中国汽车工程研究院股份有限公司, 一汽解放集团股份有限公司. 中国商用汽车产业发展报告(2024)[M]. 北京: 社会科学文献出版社, 2024.
|
[2] |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. DOI: 10.1021/cm901452z.
|
[3] |
王莉, 谢乐琼, 田光宇, 等. 锂离子电池安全事故: 安全性问题,还是可靠性问题[J]. 储能科学与技术, 2021, 10(1): 1-6. DOI: 10.19799/j.cnki.2095-4239.2020.0345.
|
|
WANG L, XIE L Q, TIAN G Y, et al. Safety accidents of Li-ion batteries: Reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10(1): 1-6. DOI: 10.19799/j.cnki. 2095-4239.2020.0345.
|
[4] |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. DOI: 10.1016/j.ensm.2017.05.013.
|
[5] |
靳欣, 张建茹, 王其钰, 等. 混合固液锂离子电池的热失控行为研究[J]. 储能科学与技术, 2024, 13(1): 48-56. DOI: 10.19799/j.cnki.2095-4239.2023.0846.
|
|
JIN X, ZHANG J R, WANG Q Y, et al. Study on thermal runaway of hybrid solid-liquid batteries[J]. Energy Storage Science and Technology, 2024, 13(1): 48-56. DOI: 10.19799/j.cnki.2095-4239.2023.0846.
|
[6] |
OUYANG D X, CHEN M Y, HUANG Q, et al. A review on the thermal hazards of the lithium-ion battery and the corresponding countermeasures[J]. Applied Sciences, 2019, 9(12): 2483. DOI: 10.3390/app9122483.
|
[7] |
SPOTNITZ R, FRANKLIN J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 2003, 113(1): 81-100. DOI: 10.1016/S0378-7753(02)00488-3.
|
[8] |
田君, 田崔钧, 王一拓, 等. 锂离子电池安全性测试与评价方法分析[J]. 储能科学与技术, 2018, 7(6): 1128-1134. DOI: 10.12028/j.issn.2095-4239.2018.0154.
|
|
TIAN J, TIAN C J, WANG Y T, et al. Safety test and evaluation method of lithium ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1128-1134. DOI: 10.12028/j.issn.2095-4239.2018.0154.
|
[9] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 电动汽车用动力蓄电池安全要求及试验方法: GB/T 31485—2015[S]. 北京: 中国标准出版社, 2015.
|
[10] |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. DOI: 10.1021/acs.chemrev. 7b00115.
|
[11] |
ZHANG H, YANG Y, REN D S, et al. Graphite as anode materials: Fundamental mechanism, recent progress and advances[J]. Energy Storage Materials, 2021, 36: 147-170. DOI: 10.1016/j.ensm.2020.12.027.
|
[12] |
李启全. 锂电池安全测试分析[J]. 电池工业, 2017, 21(2): 4-6. DOI: 10.3969/j.issn.1008-7923.2017.02.002.
|
|
LI Q Q. Safety test of lithium battery[J]. Chinese Battery Industry, 2017, 21(2): 4-6. DOI: 10.3969/j.issn.1008-7923.2017.02.002.
|
[13] |
LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. DOI: 10.1016/j.joule.2018.03.008.
|
[14] |
GAO M D, LI H, XU L, et al. Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges[J]. Journal of Energy Chemistry, 2021, 59: 666-687. DOI: 10.1016/j.jechem.2020.11.034.
|
[15] |
ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. DOI: 10.1016/j.jpowsour.2006.07.074.
|
[16] |
YUE X Y, MA C, BAO J, et al. Failure mechanisms of lithium metal anode and their advanced characterization technologies[J]. Acta Physico Chimica Sinica, 2020, 37(2): DOI: 10.3866/pku.whxb202005012.
|
[17] |
LAMB J, ORENDORFF C J, ROTH E P, et al. Studies on the thermal breakdown of common Li-ion battery electrolyte components[J]. Journal of the Electrochemical Society, 2015, 162(10): A2131-A2135. DOI: 10.1149/2.0651510jes.
|
[18] |
张世超, 沈泽宇, 陆盈盈. 金属锂电池的热失控与安全性研究进展[J]. 物理化学学报, 2021, 37(1): 61-78. DOI: 10.3866/PKU.WHXB 202008065.
|
|
ZHANG S C, SHEN Z Y, LU Y Y. Research progress of thermal runaway and safety for lithium metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 61-78. DOI: 10.3866/PKU.WHXB 202008065.
|
[19] |
CAI T, PANNALA S, STEFANOPOULOU A G, et al. Battery internal short detection methodology using cell swelling measurements[C]//2020 American Control Conference (ACC). July 1-3, 2020, Denver, CO, USA. IEEE, 2020: 1143-1148.
|
[20] |
JIA L Z, WANG D, YIN T, et al. Experimental study on thermal-induced runaway in high nickel ternary batteries[J]. ACS Omega, 2022, 7(17): 14562-14570. DOI: 10.1021/acsomega.1c06495.
|
[21] |
ZHANG Y Y, HEIM F M, SONG N N, et al. New insights into mossy Li induced anode degradation and its formation mechanism in Li-S batteries[J]. Acs Energy Letters, 2017, 2(12): 2696-2705. DOI: 10.1021/acsenergylett.7b00886.
|
[22] |
梁宏毅, 王媛, 甘友毅, 等. 三元动力锂离子电池内短路热失控残骸的特征[J]. 电池, 2024, 54(4): 487-491.DOI:10.19535/j.1001-1579.2024.04.010.
|
|
LIANG H Y, WANG Y, GAN Y Y,et al. Characteristics of residue of ternary Li-ion traction battery induced by internal short-circuit[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 487-491. DOI:10.19535/j.1001-1579.2024.04.010.
|
[23] |
HILDEBRAND J H, LAMOREAUX R H. Viscosity of liquid metals: An interpretation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(4): 988-989. DOI: 10.1073/pnas.73.4.988.
|
[24] |
LI Z, HUANG J, YANN LIAW B, et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254: 168-182. DOI: 10.1016/j.jpowsour.2013.12.099.
|
[25] |
BAI W, XIAO L, LONG T, et al. Fire-retardant and thermally conductive polyacrylonitrile-based separators enabling the safety of lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2025, 684: 377-387. DOI: 10.1016/j.jcis.2024.12.229.
|