储能科学与技术 ›› 2025, Vol. 14 ›› Issue (5): 1884-1899.doi: 10.19799/j.cnki.2095-4239.2024.1069
收稿日期:
2024-11-14
修回日期:
2025-01-26
出版日期:
2025-05-28
发布日期:
2025-05-21
通讯作者:
蔡京升
E-mail:3566831284@qq.com;jscai@cslg.edu.cn
作者简介:
唐从庆(2004—),女,本科,研究新能源电池,E-mail:3566831284@qq.com;
基金资助:
Congqing TANG(), Jingsheng CAI(
)
Received:
2024-11-14
Revised:
2025-01-26
Online:
2025-05-28
Published:
2025-05-21
Contact:
Jingsheng CAI
E-mail:3566831284@qq.com;jscai@cslg.edu.cn
摘要:
钠离子电池是继锂离子电池之后有望大规模推广的新型储能电池,然而,较低的库仑效率限制了其发展,而预钠化被认为是一种可以有效提升钠电池低首效短板的技术,对钠离子电池商业化推广生产具有重要意义。本文详细总结了国内外预钠化技术的研究进展,从三个角度(包括正极,电解液和负极)的设计和改性来讲述预钠化技术。其中正极处补钠主要包括直接浸渍法、牺牲添加剂法和电化学处理法等;电解液优化主要包含钠盐与溶剂种类优化、钠盐与溶剂的配比优化、添加剂的应用;负极处补钠主要通过直接补钠法、电化学预钠法、硬碳改性、补钠剂等方法。本文通过综述当前补钠技术的进展,总结各自优缺点与商用推广可行性,以期为钠电领域补钠技术的发展提供指导。
中图分类号:
唐从庆, 蔡京升. 补钠技术在钠离子电池中的应用进展[J]. 储能科学与技术, 2025, 14(5): 1884-1899.
Congqing TANG, Jingsheng CAI. Recent advances in presodiation strategies for sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1884-1899.
表1
常见的添加剂和添加后电池的相关性能"
添加剂名词 | 截止电压/V | 理论容量/(mAh/g) | 实际容量/(mAh/g) | 参考文献 |
---|---|---|---|---|
NaN3 | 4.2 | 412 | 300 | [ |
Na2S | 4.1 | 687 | 687 | [ |
Na3P | 4.3 | 804 | 600 | [ |
NaCrO2 | 4.2 | 251 | 229 | [ |
Na2NiO2 | 3.6 | 392 | 285 | [ |
Na2CO3 | 4.2 | 506 | 110 | [ |
NaNO2 | 4.3 | 427 | 350 | [ |
Na2C2O4 | 4.6 | 400 | 386.8 | [ |
Na2C4O4 | 4.1 | 339 | 230 | [ |
Na2C6O6 | 4.5 | 250 | 360 | [ |
Na2C6H2O6 | 4.5 | 248 | 265 | [ |
EDTA-4Na | 4.5 | 237 | 420 | [ |
DTPA-5Na | 4.3 | 266 | 363 | [ |
Na2O | 2.5~4.2 | 864 | 500 | [ |
Na2O2 | 4 | 687 | 421 | [ |
NaNH2 | 3.8 | 686 | 680 | [ |
CH3COONa | 4.18 | 326 | 302 | [ |
PABZ-Na | 3.45 | 168 | 160 | [ |
Na2C3O5 | 4 | 331 | 310 | [ |
表2
不同负极材料的电化学性能"
负极材料 | 电流 | 电化学性能(可逆容量、循环、容量保持率) | 参考文献 | |
---|---|---|---|---|
钛基 材料 | NaTiOPO4 Ti2(SO4)3 | 0.1 C 0.1 C | 180 mAh/g,/,/ 120 mAh/g,15,77.5% | [ [ |
金属氧化物 | Na2Ti3O7 α-MoO3 | 0.04 C 0.1 C | 约200 mAh/g,/,/ 100 mAh/g,500,55% (0.2 C) | [ [ |
金属复合材料 | a-TiO2-x /Sb SiC-Sb-C Ti3C2T x / SnP | 100 mA/g 100 mA /g 0.2 A /g | 591.9 mAh/g,200,96.4% (1 A/ g) 595 mAh/g,100,80.7% 587 mAh/g,1000,91.2% | [ [ [ |
有机 材料 | Na2C8H4O4 有机羧酸钠盐 | 0.1 C 40 mA /g | 258 mAh/g,50,74.4% >200 mAh/g(全电池),50,/ | [ |
碳基 材料 | 炭黑 硬碳 石墨烯 软碳 | C/75 0.1 C 0.2 C 20 mA /g | 121 mAh/g,/,/ 300.6 mAh/g,100,98.1% 174.3 mAh/g,1000,80.9% 232 mAh/g,40,98.1% | [ [ [ |
1 | 徐铭礼, 刘猛闯, 杨泽洲, 等. 高比能钠离子电池预钠化技术研究进展[J]. 物理化学学报, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043. |
XU M L, LIU M C, YANG Z Z, et al. Research progress on presodiation strategies for high energy sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(3): 33-48. DOI: 10.3866/PKU.WHXB202210043. | |
2 | SUN D, LUO B, WANG H Y, et al. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. DOI: 10.1016/j.nanoen.2019.103937. |
3 | FERNÁNDEZ-ROPERO A J, ZARRABEITIA M, BARALDI G, et al. Improved sodiation additive and its nuances in the performance enhancement of sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11814-11821. DOI: 10.1021/acsami.0c20542. |
4 | JO J H, CHOI J U, PARK Y J, et al. New insight into ethylenediaminetetraacetic acid tetrasodium salt as a sacrificing sodium ion source for sodium-deficient cathode materials for full cells[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5957-5965. DOI: 10.1021/acsami.8b18488. |
5 | ZHANG B, DUGAS R, ROUSSE G, et al. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries[J]. Nature Communications, 2016, 7: 10308. DOI: 10.1038/ncomms10308. |
6 | 陈杰, 陈伟伦, 张旭, 等. 钠离子电池预钠化技术研究进展[J]. 储能科学与技术, 2022, 11(11): 3487-3496. DOI: 10.19799/j.cnki.2095-4239.2022.0332. |
CHEN J, CHEN W L, ZHANG X, et al. Research progress of pre-sodiation technologies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496. DOI: 10. 19799/j.cnki.2095-4239.2022.0332. | |
7 | MIRZA S, SONG Z H, ZHANG H Z, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J]. Journal of Materials Chemistry A, 2020, 8(44): 23368-23375. DOI: 10.1039/D0TA08186H. |
8 | BLOI L M, PAMPEL J, DÖRFLER S, et al. Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium-sulfur batteries at room temperature[J]. Advanced Energy Materials, 2020, 10(7): 1903245. DOI: 10.1002/aenm.201903245. |
9 | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. DOI: 10.1016/j.jcis.2019.06.056. |
10 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. DOI: 10.1021/acs.chemmater.5b02684. |
11 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956. DOI: 10.1021/acs.chemmater.7b01542. |
12 | JO C H, CHOI J U, YASHIRO H, et al. Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3903-3909. DOI: 10.1039/c8ta09833f. |
13 | NIU Y B, GUO Y J, YIN Y X, et al. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Advanced Materials, 2020, 32(33): 2001419. DOI: 10.1002/adma.202001419. |
14 | ARNAIZ M, SHANMUKARAJ D, CARRIAZO D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies[J]. Energy & Environmental Science, 2020, 13(8): 2441-2449. DOI: 10.1039/D0EE00351D. |
15 | PAN X X, CHOJNACKA A, BÉGUIN F. Advantageous carbon deposition during the irreversible electrochemical oxidation of Na2C4O4 used as a presodiation source for the anode of sodium-ion systems[J]. Energy Storage Materials, 2021, 40: 22-30. DOI: 10.1016/j.ensm.2021.04.048. |
16 | SHEN X, ZHAO J M, LI Y Q, et al. Controlled synthesis of Na3(VOPO4)2F cathodes with an ultralong cycling performance[J]. ACS Applied Energy Materials, 2019, 2(10): 7474-7482. DOI: 10.1021/acsaem.9b01458. |
17 | SHANMUKARAJ D, KRETSCHMER K, SAHU T, et al. Highly efficient, cost effective, and safe sodiation agent for high-performance sodium-ion batteries[J]. ChemSusChem, 2018, 11(18): 3286-3291. DOI: 10.1002/cssc.201801099. |
18 | MARTÍNEZ DE ILARDUYA J, OTAEGUI L, GALCERÁN M, et al. Towards high energy density, low cost and safe Na-ion full-cell using P2-Na0.67[Fe0.5Mn0.5]O2 and Na2C4O4 sacrificial salt[J]. Electrochimica Acta, 2019, 321: 134693. DOI: 10.1016/j.electacta. 2019.134693. |
19 | ZOU K Y, CAI P, TIAN Y, et al. Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors[J]. Small Methods, 2020, 4(3): 1900763. DOI: 10.1002/smtd.201900763. 1900763. |
20 | JO J H, CHOI J U, PARK Y J, et al. A new pre-sodiation additive for sodium-ion batteries[J]. Energy Storage Materials, 2020, 32: 281-289. DOI: 10.1016/j.ensm.2020.07.002. |
21 | ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59. DOI: 10.1016/j.ensm.2021.04.011. |
22 | GUO Y J, NIU Y B, WEI Z, et al. Insights on electrochemical behaviors of sodium peroxide as a sacrificial cathode additive for boosting energy density of Na-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2772-2778. DOI: 10.1021/acsami.0c20870. |
23 | JEŻOWSKI P, CHOJNACKA A, PAN X, et al. Sodium amide as a "zero dead mass" sacrificial material for the pre-sodiation of the negative electrode in sodium-ion capacitors[J]. Electrochimica Acta, 2021, 375: 137980. DOI: 10.1016/j.electacta.2021.137980. |
24 | ZOU K Y, SONG Z R, GAO X, et al. Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors[J]. Angewandte Chemie International Edition, 2021, 60(31): 17070-17079. DOI: 10.1002/anie.202103569. |
25 | ZOU K Y, SONG Z R, LIU H Q, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979. DOI: 10.1021/acs.jpclett.1c03078. |
26 | 张睿. 正极补钠和负极界面调控提升钠离子电池能量密度的研究[D]. 长沙: 中南大学, 2023. DOI: 10.27661/d.cnki.gzhnu. 2023. 000257. |
ZHANG R. Improving energy density of sodium-ion batteries based on cathode pre-sodiation and anode interface tuning strategies[D]. Changsha: Central South University, 2023. DOI: 10.27661/d.cnki.gzhnu.2023.000257. | |
27 | LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23207-23212. DOI: 10.1021/acsami.9b05005. |
28 | WU W, HU Z L, ZHAO Z F, et al. A functional cathode sodium compensation agent for stable sodium-ion batteries[J]. Green Energy & Environment, 2025, 10(1): 173-182. DOI: 10.1016/j.gee.2024.02.009. |
29 | FANG K, TANG Y L, LIU J J, et al. Injecting excess Na into a P2-type layered oxide cathode to achieve presodiation in a Na-ion full cell[J]. Nano Letters, 2023, 23(14): 6681-6688. DOI: 10.1021/acs.nanolett.3c01890. |
30 | ZHENG M, WILLEY M, WEST A C. Electrochemical nucleation of copper on ruthenium[J]. Electrochemical and Solid-State Letters, 2005, 8(10): C151. DOI: 10.1149/1.2035701. |
31 | KAMATH G, CUTLER R W, DESHMUKH S A, et al. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13406-13416. DOI: 10. 1021/jp502319p. |
32 | PONROUCH A, MARCHANTE E, COURTY M, et al. In search of an optimized electrolyte for Na-ion batteries[J]. Energy & Environmental Science, 2012, 5(9): 8572-8583. DOI: 10.1039/C2EE22258B. |
33 | KOMABA S, ISHIKAWA T, YABUUCHI N, et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Applied Materials & Interfaces, 2011, 3(11): 4165-4168. DOI: 10.1021/am200973k. |
34 | PONROUCH A, GOÑI A R, PALACÍN M R. High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte[J]. Electrochemistry Communications, 2013, 27: 85-88. DOI: 10.1016/j.elecom.2012.10.038. |
35 | LIN Z H, XIA Q B, WANG W L, et al. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries[J]. InfoMat, 2019, 1(3): 376-389. DOI: 10.1002/inf2.12023. |
36 | TANG Z, ZHOU S Y, HUANG Y C, et al. Improving the initial coulombic efficiency of carbonaceous materials for Li/Na-ion batteries: Origins, solutions, and perspectives[J]. Electrochemical Energy Reviews, 2023, 6(1): 8. DOI: 10.1007/s41918-022-00178-y. |
37 | LE P M L, VO T D, PAN H, et al. Excellent cycling stability of sodium anode enabled by a stable solid electrolyte interphase formed in ether-based electrolytes[J]. Advanced Functional Materials, 2020, 30(25): 2001151. |
38 | YIN L M, WANG M L, XIE C, et al. High-voltage cyclic ether-based electrolytes for low-temperature sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.2c23008. |
39 | ZHEN Y C, SA R J, ZHOU K Q, et al. Breaking the limitation of sodium-ion storage for nanostructured carbon anode by engineering desolvation barrier with neat electrolytes[J]. Nano Energy, 2020, 74: 104895. DOI: 10.1016/j.nanoen.2020.104895. |
40 | HOU X, LI T Y, QIU Y L, et al. Interfacial chemistry of perfluorinated-anion additives deciphering ether-based electrolytes for sodium-ion batteries[J]. ACS Energy Letters, 2024, 9(2): 461-467. DOI: 10.1021/acsenergylett.3c02811. |
41 | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. DOI: 10.1016/j.jpowsour.2018.06.067. |
42 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): 1903795. DOI: 10.1002/adfm.201903795. |
43 | ALCÁNTARA R, LAVELA P, ORTIZ G F, et al. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8(4): A222. DOI: 10.1149/1.1870612. |
44 | WANG H B, XIAO Y Z, SUN C, et al. A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode[J]. RSC Advances, 2015, 5(129): 106519-106522. DOI: 10.1039/C5RA21235A. |
45 | MOEEZ I, JUNG H G, LIM H D, et al. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41394-41401. DOI: 10.1021/acsami.9b14381. |
46 | LIU L Y, TIAN Y, ABDUSSALAM A, et al. Hard carbons as anodes in sodium-ion batteries: Sodium storage mechanism and optimization strategies[J]. Molecules, 2022, 27(19): 6516. DOI: 10.3390/molecules27196516. |
47 | MU L Q, BEN L B, HU Y S, et al. Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7141-7147. DOI: 10.1039/C6TA00891G. |
48 | SENGUTTUVAN P, ROUSSE G, VEZIN H, et al. Titanium(III) sulfate as new negative electrode for sodium-ion batteries[J]. Chemistry of Materials, 2013, 25(12): 2391-2393. DOI: 10.1021/cm401181b. |
49 | SENGUTTUVAN P, ROUSSE G, SEZNEC V, et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries[J]. Chemistry of Materials, 2011, 23(18): 4109-4111. DOI: 10.1021/cm202076g. |
50 | HARIHARAN S, SARAVANAN K, BALAYA P. α-MoO3: A high performance anode material for sodium-ion batteries[J]. Electrochemistry Communications, 2013, 31: 5-9. DOI: 10.1016/j.elecom.2013.02.020. |
51 | GAO L, LU D J, YANG Y H, et al. Amorphous TiO2- x modified Sb nanowires as a high-performance sodium-ion battery anode[J]. Journal of Non-Crystalline Solids, 2022, 581: 121396. DOI: 10.1016/j.jnoncrysol.2022.121396. |
52 | WU L, PEI F, MAO R J, et al. SiC-Sb-C nanocomposites as high-capacity and cycling-stable anode for sodium-ion batteries[J]. Electrochimica Acta, 2013, 87: 41-45. DOI: 10.1016/j.electacta. 2012.08.103. |
53 | TANG J Y, PENG X Y, LIN T E, et al. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience, 2021, 1(2): 203-211. DOI: 10.1016/j.esci.2021.12.004. |
54 | ZHAO L, ZHAO J M, HU Y S, et al. Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery[J]. Advanced Energy Materials, 2012, 2(8): 962-965. DOI: 10.1002/aenm.201200166. |
55 | ABOUIMRANE A, WENG W, ELTAYEB H, et al. Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells[J]. Energy & Environmental Science, 2012, 5(11): 9632-9638. DOI: 10.1039/C2EE22864E. |
56 | ALCÁNTARA R, JIMÉNEZ-MATEOS J M, LAVELA P, et al. Carbon black: A promising electrode material for sodium-ion batteries[J]. Electrochemistry Communications, 2001, 3(11): 639-642. DOI: 10.1016/S1388-2481(01)00244-2. |
57 | LU Y X, ZHAO C L, QI X G, et al. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Advanced Energy Materials, 2018, 8(27): 1800108. DOI: 10.1002/aenm.201800108. |
58 | WANG Y X, CHOU S L, LIU H K, et al. Reduced graphene oxide with superior cycling stability and rate capability for sodium storage[J]. Carbon, 2013, 57: 202-208. DOI: 10.1016/j.carbon. 2013.01.064. |
59 | YAO X H, KE Y J, REN W H, et al. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage[J]. Advanced Energy Materials, 2019, 9(8): 1900094. DOI: 10.1002/aenm.201900094. |
60 | DOU X W, HASA I, SAUREL D, et al. Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry[J]. Materials Today, 2019, 23: 87-104. DOI: 10.1016/j.mattod. 2018.12.040. |
61 | LU H Y, SUN S F, XIAO L F, et al. High-capacity hard carbon pyrolyzed from subbituminous coal as anode for sodium-ion batteries[J]. ACS Applied Energy Materials, 2019, 2(1): 729-735. DOI: 10.1021/acsaem.8b01784. |
62 | 曹永安, 游济远, 邹家轩, 等. 钠离子电池预钠化技术研究进展[J]. 精细石油化工, 2023, 40(2): 75-80. DOI: 10.20075/j.cnki.issn.1003-9384.2023.02.018. |
CAO Y A, YOU J Y, ZOU J X, et al. Research progress on pre-sodiation strategy of sodium-ion battery[J]. Speciality Petrochemicals, 2023, 40(2): 75-80. DOI: 10.20075/j.cnki.issn.1003-9384. 2023.02.018. | |
63 | LIU M C, ZHANG J Y, GUO S H, et al. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17620-17627. DOI: 10.1021/acsami. 0c02230. |
64 | XIAO B W, SOTO F A, GU M, et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes[J]. Advanced Energy Materials, 2018, 8(24): 1801441. DOI: 10.1002/aenm.201801441. |
65 | WANG X H, QI L, WANG H Y. Commercial carbon molecular sieves as a Na+-storage anode material in dual-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): A3649-A3656. DOI: 10.1149/2.0491714jes. |
66 | MA R F, FAN L, CHEN S H, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15751-15759. DOI: 10.1021/acsami.8b03648. |
[1] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
[2] | 李昱, 李丹丹, 谢飞, 唐彬, 容晓晖, 梁沁沁, 胡勇胜. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, 2025, 14(5): 1748-1757. |
[3] | 曾州岚, 尚雷, 胡志金, 王宗凡, 辛小超, 刘瑛. 高容量锂离子电池正极补锂材料Li5FeO4@C的性能研究[J]. 储能科学与技术, 2025, 14(5): 1875-1883. |
[4] | 单福星, 霍海波, 张铮, 渐彬彬, 陈军. 钠离子电池的阶梯充电策略及优化[J]. 储能科学与技术, 2025, 14(4): 1668-1678. |
[5] | 廖兴群, 杨睿, 于立娟, 胡大林, 肖峰, 胡菁, 卢周广. 多功能电解液添加剂2,6-吡啶二甲腈稳定高电压钴酸锂[J]. 储能科学与技术, 2025, 14(4): 1331-1339. |
[6] | 安仲勋, 梁鹏程, 杨重阳. 不同预钠化比例对AC//HC型钠离子电容器的性能影响[J]. 储能科学与技术, 2025, 14(4): 1679-1686. |
[7] | 闻有为, 滕安琪, 李勇琦, 田佳敏, 丁康杰, 段强领, 王青松. 不同放电倍率下钠离子电池的电性能与产热行为研究[J]. 储能科学与技术, 2025, 14(4): 1687-1697. |
[8] | 李勇琦, 李志远, 闻有为, 王成东, 段强领, 王青松. 大容量钠离子电池热失控特性实验研究[J]. 储能科学与技术, 2025, 14(4): 1657-1667. |
[9] | 王蕾, 刘少冕, 范凤兰, 杨子腾. 速生木基钠离子电池硬碳负极构效关系[J]. 储能科学与技术, 2025, 14(3): 1107-1114. |
[10] | 陈钊, 梁沁沁, 李玉婷, 谢飞, 唐彬, 李建新, 陆雅翔, 陈爱兵, 胡勇胜. 钠离子电池锡基合金类负极材料研究进展[J]. 储能科学与技术, 2025, 14(3): 883-897. |
[11] | 潘美玲, 孙楠楠, 赵志超. 二维VC2作为钠离子电池负极材料的理论研究[J]. 储能科学与技术, 2025, 14(2): 497-504. |
[12] | 王阳峰, 侯佳傲, 朱紫宸, 所聪, 侯栓弟. 钠离子电池硬碳闭孔结构研究进展[J]. 储能科学与技术, 2025, 14(2): 555-569. |
[13] | 常永刚, 张晋豪, 解炜, 李秀春, 王毅林, 陈成猛. 钠离子电池硬碳负极容量提升策略研究进展[J]. 储能科学与技术, 2025, 14(2): 544-554. |
[14] | 张李帅, 张艺菲, 马伊扬, 赵思博, 刘洪全, 石盛庭, 钟艳君. 铁基普鲁士蓝类似物钠离子电池正极材料研究进展[J]. 储能科学与技术, 2025, 14(2): 525-543. |
[15] | 乌兰, 杨杰, 耿磊, 胡润, 彭尚龙. 钠离子电池正极表面残余碱转换钠补偿包覆层[J]. 储能科学与技术, 2025, 14(1): 21-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||