储能科学与技术 ›› 2025, Vol. 14 ›› Issue (7): 2707-2713.doi: 10.19799/j.cnki.2095-4239.2025.0038

• 第十三届储能国际峰会暨展览会专辑 • 上一篇    下一篇

溴化锂晶体吸附特征和微观结构表征研究

赵泳涵(), 王刚(), 杨晖   

  1. 北京建筑大学供热供燃气通风及空调工程北京市重点实验室,北京 100044
  • 收稿日期:2025-01-08 修回日期:2025-02-08 出版日期:2025-07-28 发布日期:2025-07-11
  • 通讯作者: 王刚 E-mail:zhaoyonghan1027@163.com;wanggang@bucea.edu.cn
  • 作者简介:赵泳涵(2001—),女,硕士研究生,研究方向为热化学储能,E-mail:zhaoyonghan1027@163.com

Adsorption characteristics and microstructure characterization of lithium bromide crystals

Yonghan ZHAO(), Gang WANG(), Hui YANG   

  1. Beijing Key Laboratory of Heating, Vapor Supply, Ventilation and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Received:2025-01-08 Revised:2025-02-08 Online:2025-07-28 Published:2025-07-11
  • Contact: Gang WANG E-mail:zhaoyonghan1027@163.com;wanggang@bucea.edu.cn

摘要:

晶体形貌特征的表征是揭示溶液结晶蓄能机理的关键。晶体的表面结构、孔隙分布及吸附特性决定了晶体在热能储存过程中的吸附和释放效率。本工作采用多站重量法全功能蒸汽吸附仪、扫描电子显微镜和全自动比表面和孔径分布分析仪,从微观角度表征了无水和一水溴化锂晶体的吸附特征以及内外微观形貌。结果表明,溴化锂晶体在溶解过程中存在吸附现象,当相对湿度为90%时,无水溴化锂吸与一水溴化锂晶体的最大饱和吸附量分别为3027.966 mg/g和2322.909 mg/g;溴化锂晶体表面显微结构粗糙,存在的蚀坑成为溶解台阶,影响晶体吸附和解吸的过程;当晶体表面无液膜存在时,无水溴化锂与一水溴化锂晶体的微孔外比表面积分别为1.1×10-2 m2/g和8×10-3 m2/g,介孔比表面积分别为7.7×10-2 m2/g和8×10-2 m2/g,在吸收和传递水蒸气时溴化锂晶体先通过表面的孔隙吸附水蒸气,当吸附达到饱和后,晶体再通过溶解过程吸收水蒸气。通过调节溴化锂晶体的水合状态,可优化其储能性能,并增强系统稳定性,为太阳能热能储存技术的优化及高效储热系统的材料选择与设计提供实验与理论支持。

关键词: 溴化锂, 晶体, 吸附, 吸收, 显微结构

Abstract:

The characterization of crystal morphology features is critical for revealing the solution–crystalline energy storage mechanism. The surface structure, pore distribution, and adsorption properties of crystals determine their adsorption and release efficiency during thermal energy storage. This study investigates the adsorption properties and microstructure features of both anhydrous and monohydrate lithium bromide (LiBr) crystals using advanced characterization techniques. This study provides detailed microscopic insights into the internal and external structures of LiBr crystals using a combination of vacuum vapor sorption analysis, scanning electron microscopy, and automatic surface area and pore size distribution measurements. The results demonstrate that under 90% relative humidity, anhydrous LiBr and monohydrate LiBr crystals exhibit adsorption of 3027.966 and 2322.909 mg/g, respectively. The LiBr crystals exhibit a rough surface microstructure characterized by etching craters, which serve as active dissolution sites and significantly affect the adsorption and desorption processes of the crystals. Under dry conditions (absence of liquid film), the specific surface areas of the micropores of anhydrous and monohydrate LiBr crystals are 1.1×10-2 m2/g and 8×10-3 m2/g, respectively, and the specific surface areas of the mesopores are 7.7×10-2 m2/g and 8×10-2 m2/g, respectively. During water vapor absorption, LiBr crystals initially adsorb water vapor through surface pores. Once the adsorption reaches saturation, the crystals continue to absorb water vapor via dissolution. By adjusting the hydration state of LiBr crystals, their energy storage performance can be optimized while improving system stability. These findings provide both experimental and theoretical support for the optimization of solar thermal energy storage technology and the selection and design of materials for efficient thermal storage systems.

Key words: lithium bromide, crystal, adsorption, absorption, microstructure

中图分类号: