储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 2913-2924.doi: 10.19799/j.cnki.2095-4239.2025.0683
收稿日期:
2025-07-28
修回日期:
2025-08-05
出版日期:
2025-08-28
发布日期:
2025-08-18
通讯作者:
杨重阳
E-mail:siyecaolynn@163.com;ycy6142@sina.com
作者简介:
范羚羚(1992—),女,硕士,工程师,研究方向为能量型超级电容器的研究,E-mail:siyecaolynn@163.com;
基金资助:
Lingling FAN1(), Zhongzhu LIU2, Chongyang YANG1(
)
Received:
2025-07-28
Revised:
2025-08-05
Online:
2025-08-28
Published:
2025-08-18
Contact:
Chongyang YANG
E-mail:siyecaolynn@163.com;ycy6142@sina.com
摘要:
锂离子电容器作为一种新型储能器件,可以填补高功率器件和高能量器件之间的技术空白。本工作以活性炭(AC)为正极,正交晶相五氧化二铌(T-Nb2O5)为负极组装为软包装的锂离子电容器,研究预锂量对该种器件在不同正负极质量比下(P/N比)的影响。结果表明,通过预锂化,可以有效提高该种器件的电化学性能,不论采用何种P/N比,预锂量提高至60%后,开路电位均可提高到1.5 V以上,首次库仑效率可提高至80%以上,在有效提高材料克容量的同时具备更小的内阻,循环伏安曲线具有典型的电容特征,常温搁置33天后电压保持能力仍有75%及以上,在100C大倍率条件下的容量保持率高达95%以上,3000次循环后的容量保持率均高于90%。P/N比越高对该种器件性能更有利,具体表现为首次库仑效率更高,自放电中具有更高的电压保持能力,其中P/N比最大的锂离子电容器(P/N=1.1)预锂60%后,在103.2 W/kg的功率密度下可发挥30.4 Wh/kg的能量密度,在2098.1 W/kg的功率密度下能量密度仍旧有29.4 Wh/kg,具有稳定输出。
中图分类号:
范羚羚, 刘中柱, 杨重阳. 预锂化对AC//Nb2O5 型锂离子电容器性能的影响[J]. 储能科学与技术, 2025, 14(8): 2913-2924.
Lingling FAN, Zhongzhu LIU, Chongyang YANG. Effect of prelithiation on the performance of AC//Nb2O5 lithium-ion capacitors[J]. Energy Storage Science and Technology, 2025, 14(8): 2913-2924.
表2
各锂离子电容器性能对比"
正极/负极 | 电解液 | 能量密度/(Wh/kg) | 功率密度/(W/kg) | 寿命 | 参考文献 |
---|---|---|---|---|---|
活性炭/T-Nb2O5 | LiPF6/(C3H4O3+ C5H10O3) | 92%@1000次 | [ | ||
活性炭/T-Nb2O5 | LiPF6/(C3H4O3+ C3H6O3+ C5H10O3) | 10.3 | 2430 | 73%@1000次 | [ |
活性炭/Nb2O5+CNT | LiClO4/C4H6O3 | 17(根据图片推算) | 2000(根据图片推算) | 60%@500圈(根据图片推算) | [ |
活性炭/Li4Ti5O12 | LiPF6//(C3H4O3+ C3H6O3) | 22.5 | 2000 | 80%@1000次 | [ |
活性炭/ Li4Ti5O12 | LiBF4/CH3CN | 4.3 | 1068 | 88.3%, 900 cycles | [ |
活性炭/硬碳 | LiPF6/(C3H4O3+ C3H6O3+ C5H10O3) | 18.1 | 3700 | 83%@10000次(推算为90%@3000次) | [ |
[1] | HAN P X, XU G J, HAN X Q, et al. Lithium ion capacitors in organic electrolyte system: Scientific problems, material development, and key technologies[J]. Advanced Energy Materials, 2018, 8(26): 1801243. DOI: 10.1002/aenm.201801243. |
[2] | LIU Y, JIANG H D, GUO P C, et al. Progress and prospects of lithium-ion capacitors: A review[J]. Journal of Materials Science, 2025, 60(4): 1767-1796. DOI: 10.1007/s10853-024-10586-8. |
[3] | JIN L M, YUAN J M, SHELLIKERI A, et al. An overview on design parameters of practical lithium-ion capacitors[J]. Batteries & Supercaps, 2021, 4(5): 749-757. DOI: 10.1002/batt.202000296. |
[4] | JAGADALE A, ZHOU X, XIONG R, et al. Lithium ion capacitors (LICs): Development of the materials[J]. Energy Storage Materials, 2019, 19: 314-329. DOI: 10.1016/j.ensm.2019.02.031. |
[5] | DU C Y, ZHAO Z Y, LIU H, et al. The status of representative anode materials for lithium-ion batteries[J]. The Chemical Record, 2023, 23(5): e202300004. DOI: 10.1002/tcr.202300004. |
[6] | YUAN S, LAI Q H, DUAN X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716. DOI: 10.1016/j.est.2023.106716. |
[7] | WANG Y X, ZHANG Y F, ZHOU J J, et al. Research progress of lithium titanate anode as lithium ion capacitor[J]. Journal of Energy Storage, 2025, 131: 117531. DOI: 10.1016/j.est.2025.117531. |
[8] | CHOI W, BYUN S, YEON C, et al. Defective lithium titanate oxide with stable cycling over a wide voltage window[J]. Applied Surface Science, 2023, 614: 156134. DOI: 10.1016/j.apsusc. 2022.156134. |
[9] | LI Y Q, VASILEIADIS A, ZHOU Q, et al. Origin of fast charging in hard carbon anodes[J]. Nature Energy, 2024, 9(2): 134-142. DOI: 10.1038/s41560-023-01414-5. |
[10] | XIONG K, QI T S, ZHANG X. Advancements in graphite anodes for lithium-ion and sodium-ion batteries: A review[J]. Electroanalysis, 2025, 37(1): e202400318. DOI: 10.1002/elan. 202400318. |
[11] | YANG L, ZHAO Y N, ZHANG Y Q, et al. Structural engineering of hard-soft carbon hybrid anodes for ultrafast and ultradurable potassium-ion storage[J]. Small Methods, 2024, 8(8): 2301355. DOI: 10.1002/smtd.202301355. |
[12] | SHEN C, HU G H, CHEONG L Z, et al. Direct observation of the growth of lithium dendrites on graphite anodes by operando EC-AFM[J]. Small Methods, 2018, 2(2): 1700298. DOI: 10.1002/smtd.201700298. |
[13] | CAO W J, ZHENG J P. The effect of cathode and anode potentials on the cycling performance of Li-ion capacitors[J]. Journal of the Electrochemical Society, 2013, 160(9): A1572-A1576. DOI: 10.1149/2.114309jes. |
[14] | CAO W J, ZHENG J S, ADAMS D, et al. Comparative study of the power and cycling performance for advanced lithium-ion capacitors with various carbon anodes[J]. Journal of the Electrochemical Society, 2014, 161(14): A2087-A2092. DOI: 10. 1149/2.0431414jes. |
[15] | ZHANG X X, QU H N, JI W X, et al. Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 11589-11599. DOI: 10.1021/acsami.9b21417. |
[16] | HUANG Z Y, DENG Z, ZHONG Y, et al. Progress and challenges of prelithiation technology for lithium-ion battery[J]. Carbon Energy, 2022, 4(6): 1107-1132. DOI: 10.1002/cey2.256. |
[17] | FLEISCHMANN S, MITCHELL J B, WANG R C, et al. Pseudocapacitance: From fundamental understanding to high power energy storage materials[J]. Chemical Reviews, 2020, 120(14): 6738-6782. DOI: 10.1021/acs.chemrev.0c00170. |
[18] | JIANG Y Q, LIU J P. Definitions of pseudocapacitive materials: A brief review[J]. Energy & Environmental Materials, 2019, 2(1): 30-37. DOI: 10.1002/eem2.12028. |
[19] | PANG R, WANG Z Q, LI J K, et al. Polymorphs of Nb2O5 compound and their electrical energy storage applications[J]. Materials, 2023, 16(21): 6956. DOI: 10.3390/ma16216956. |
[20] | LIN J, ZHAO S Y, JERVIS R, et al. Probing the electrochemical processes of niobium pentoxides (Nb2O5) for high-rate lithium-ion batteries: A review[J]. ChemElectroChem, 2024, 11(6): e202300581. DOI: 10.1002/celc.202300581. |
[21] | KUMAGAI N, KOISHIKAWA Y, KOMABA S, et al. Thermodynamics and kinetics of lithium intercalation into Nb2O5 electrodes for a 2 V rechargeable lithium battery[J]. Journal of the Electrochemical Society, 1999, 146(9): 3203-3210. DOI: 10.1149/1.1392455. |
[22] | LIAO J Q, TAN R, KUANG Z X, et al. Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance[J]. Chinese Chemical Letters, 2018, 29(12): 1785-1790. DOI: 10.1016/j.cclet.2018.11.018. |
[23] | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522. DOI: 10.1038/nmat3601. |
[24] | 王鑫, 胡培, 周远明, 等. Nb2C MXene衍生Nb2O5多层纳米片的快速合成及其在锂离子电容器中的性能[J]. 储能科学与技术, 2022, 11(1): 38-44. DOI: 10.19799/j.cnki.2095-4239.2021.0559. |
WANG X, HU P, ZHOU Y M, et al. Fast synthesis of Nb2O5 nanosheets derived from Nb2C MXene for lithium ion capacitors[J]. Energy Storage Science and Technology, 2022, 11(1): 38-44. DOI: 10.19799/j.cnki.2095-4239.2021.0559. | |
[25] | 贾朝阳, 刘美男, 赵新洛, 等. 基于三维花状五氧化二铌及活性炭的锂离子混合电容器[J]. 物理化学学报, 2017, 33(12): 2510-2516. DOI: 10.3866/PKU.WHXB201705311. |
JIA Z Y, LIU M N, ZHAO X L, et al. Lithium ion hybrid supercapacitor based on three-dimensional flower-like Nb2O5 and activated carbon electrode materials[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2510-2516. DOI: 10.3866/PKU.WHXB 201705311. | |
[26] | SONG J J, ZHANG C, ZHAO P, et al. Manipulating oxygen vacancy for controlling the kinetics of Nb2O5-based anode in Li-ion capacitor[J]. Chemical Engineering Journal, 2024, 485: 150046. DOI: 10.1016/j.cej.2024.150046. |
[27] | COME J, AUGUSTYN V, KIM J W, et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes[J]. Journal of the Electrochemical Society, 2014, 161(5): A718-A725. DOI: 10.1149/2.040405jes. |
[28] | LI B, ZHENG J S, ZHANG H Y, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors[J]. Advanced Materials, 2018, 30(17): 1705670. DOI: 10.1002/adma.201705670. |
[29] | AN Z X, LIU Z Z, YANG C Y. Effect of organic electrolyte and voltage on electrochemical performances and capacity degradation for Li-ion hybrid capacitors based on Nb2O5 anode[J]. Journal of Solid State Electrochemistry, 2025, 29(7): 2837-2847. DOI: 10.1007/s10008-025-06201-8. |
[30] | WANG X L, LI G, CHEN Z, et al. High-performance supercapacitors based on nanocomposites of Nb2O5 nanocrystals and carbon nanotubes[J]. Advanced Energy Materials, 2011, 1(6): 1089-1093. DOI: 10.1002/aenm.201100332. |
[31] | YE L, LIANG Q H, LEI Y, et al. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform[J]. Journal of Power Sources, 2015, 282: 174-178. DOI: 10.1016/j.jpowsour.2015.02.028. |
[32] | AN Z X, XU X R, FAN L L, et al. Investigation of electrochemical performance and gas swelling behavior on Li4Ti5O12/activated carbon lithium-ion capacitor with acetonitrile-based and ester-based electrolytes[J]. Electronics, 2021, 10(21): 2623. DOI: 10.3390/electronics10212623. |
[33] | SUN X Z, ZHANG X, LIU W J, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor[J]. Electrochimica Acta, 2017, 235: 158-166. DOI: 10.1016/j.electacta.2017.03.110. |
[34] | IKE I S, SIGALAS I, IYUKE S. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: A review[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 661-680. DOI: 10.1039/C5CP 05459A. |
[35] | JING L Q, ZHUO K L, SUN L, et al. The mass-balancing between positive and negative electrodes for optimizing energy density of supercapacitors[J]. Journal of the American Chemical Society, 2024, 146(21): 14369-14385. DOI: 10.1021/jacs.4c00486. |
[36] | COSTENTIN C, SAVÉANT J M. Energy storage: Pseudocapacitance in prospect[J]. Chemical Science, 2019, 10(22): 5656-5666. DOI: 10.1039/c9sc01662g. |
[37] | ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(8/9): 1636-1640. DOI: 10.1016/j.electacta.2005.02.137. |
[38] | CAI M Y, SUN X G, NIE Y Y, et al. Electrochemical performance of lithium-ion capacitors using prelithiated multiwalled carbon nanotubes as anode[J]. Nano, 2017, 12(4): 1750051. DOI: 10. 1142/s1793292017500515. |
[39] | 秦凯, 孙新华, 杨良君, 等. 高比能磷酸铁锂电池电解液浸润性能改善研究[J]. 电源技术, 2020, 44(8): 1099-1101, 1181. DOI: 10.3969/j.issn.1002-087X.2020.08.006. |
QIN K, SUN X H, YANG L J, et al. Improvement of electrolyte wettability of high specific energy LiFePO4 battery[J]. Chinese Journal of Power Sources, 2020, 44(8): 1099-1101, 1181. DOI: 10.3969/j.issn.1002-087X.2020.08.006. | |
[40] | CHIU K C, LIN C H, YEH S F, et al. Cycle life analysis of series connected lithium-ion batteries with temperature difference[J]. Journal of Power Sources, 2014, 263: 75-84. DOI: 10.1016/j.jpowsour.2014.04.034. |
[41] | ISHIMOTO S, ASAKAWA Y, SHINYA M, et al. Degradation responses of activated-carbon-based EDLCs for higher voltage operation and their factors[J]. Journal of the Electrochemical Society, 2009, 156(7): A563. DOI: 10.1149/1.3126423. |
[42] | SUN X Z, AN Y B, ZHANG X, et al. Unveil overcharge performances of activated carbon cathode in various Li-ion electrolytes[J]. Batteries, 2023, 9(1): 11. DOI: 10.3390/batteries 9010011. |
[1] | 胡志金, 尚雷, 王宗凡, 曾州岚, 刘瑛, 辛小超. 真空烧结制备高性能正极补锂剂Li2NiO2 的性能研究[J]. 储能科学与技术, 2025, 14(5): 1910-1917. |
[2] | 安仲勋, 梁鹏程, 杨重阳. 不同预钠化比例对AC//HC型钠离子电容器的性能影响[J]. 储能科学与技术, 2025, 14(4): 1679-1686. |
[3] | 许陈程, 王湛, 李爽, 蒋江民, 鞠治成. 锂离子电池预锂化技术研究进展及工程化应用展望[J]. 储能科学与技术, 2025, 14(3): 930-946. |
[4] | 孔妍妍, 张熊, 安亚斌, 李晨, 孙现众, 王凯, 马衍伟. MOF衍生多孔碳基材料的制备及其在锂离子电容器负极中的应用进展[J]. 储能科学与技术, 2024, 13(8): 2665-2678. |
[5] | 滕国营, 王新改, 孟海军, 丁飞. 高功率储能器件的研究进展[J]. 储能科学与技术, 2024, 13(10): 3442-3452. |
[6] | 张贵萍, 闫筱炎, 王兵, 姚培新, 胡昌杰, 刘奕哲, 李纾黎, 薛建军. 长寿命循环的磷酸铁锂电池及材料、工艺[J]. 储能科学与技术, 2023, 12(7): 2134-2140. |
[7] | 刘树港, 蒙波, 李政隆, 杨亚雄, 陈建. Li x (Mg, Ni, Zn, Cu, Co) 1-x O高熵氧化物负极材料电化学储锂特性[J]. 储能科学与技术, 2023, 12(3): 743-753. |
[8] | 闵凡奇, 吕桃林, 付诗意, 张立恒, 党国举, 晏莉琴, 解晶莹, 高云智. 锂离子电容器的热特性及热模型[J]. 储能科学与技术, 2022, 11(8): 2629-2636. |
[9] | 程广玉, 刘新伟, 梅悦旎, 顾洪汇, 杨丞, 王可. 锂离子电池高温贮存容量衰减分析[J]. 储能科学与技术, 2022, 11(5): 1339-1349. |
[10] | 张策, 李思吾, 谢佳. 合金型负极预锂化技术研究进展[J]. 储能科学与技术, 2022, 11(5): 1383-1400. |
[11] | 袁玉和, 刘亮, 张洪涛, 衣启正, 张永鹏, 郭延哲, 苑文畅, 李希超. 锂离子电容器自放电检测方法研究[J]. 储能科学与技术, 2022, 11(2): 690-696. |
[12] | 王鑫, 胡培, 周远明, 徐进霞, 蒋妍. Nb2C MXene衍生Nb2O5多层纳米片的快速合成及其在锂离子电容器中的性能[J]. 储能科学与技术, 2022, 11(1): 38-44. |
[13] | 郭义敏, 郭德超, 张啟文, 龙超, 何凤荣. 电极结构对锂离子电容器电性能的影响[J]. 储能科学与技术, 2021, 10(6): 2106-2111. |
[14] | 赵清江, 张贵锋. 硬碳的预锂化及其电化学性能[J]. 储能科学与技术, 2021, 10(6): 2112-2116. |
[15] | 李伟辉, 钟兴国, 李会巧. 金属锂的钝化保护及应用[J]. 储能科学与技术, 2021, 10(3): 974-986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||