储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3110-3121.doi: 10.19799/j.cnki.2095-4239.2025.0169

• 储能材料与器件 • 上一篇    

氮化钒基电极材料的制备及其在超级电容器中的应用进展

刘宏辉1,2(), 李冬辉1(), 钱其峰2, 肖凌超2, 熊磊2, 陈仲国2   

  1. 1.天津大学电气自动化与信息工程学院,天津 300072
    2.浙江芯能光伏科技股份有限公司,浙江 嘉兴 314400
  • 收稿日期:2025-02-22 修回日期:2025-03-20 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 李冬辉 E-mail:hhliu2017@sina.com;lidonghui@tju.edu.cn
  • 作者简介:刘宏辉(1989—),男,博士,副教授,研究方向为储能材料设计、制备及性能调控,E-mail:hhliu2017@sina.com
  • 基金资助:
    河北省教育厅青年拔尖人才项目(BJK2024086);中央高校基本科研业务费(3142024026)

Preparation of vanadium nitride-based electrode materials and their application progress in supercapacitors

Honghui LIU1,2(), Donghui LI1(), Qifeng QIAN2, Lingchao XIAO2, Lei XIONG2, Zhongguo CHEN2   

  1. 1.School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
    2.Zhejiang Sunoren Solar Technology Co. , Ltd. , Jiaxing 314400, Zhejiang, China
  • Received:2025-02-22 Revised:2025-03-20 Online:2025-08-28 Published:2025-08-18
  • Contact: Donghui LI E-mail:hhliu2017@sina.com;lidonghui@tju.edu.cn

摘要:

氮化钒(VN)具有极高的理论比容量、良好的电子导电性及较宽的工作电压窗口,被认为是理想的超级电容器电极材料之一。然而,现有制备方法所得VN材料存在比表面积小、表面结构致密、电化学活性差等问题,导致其实际比容量低、倍率性能差、循环寿命短。本文通过对近年来相关文献的分析,综述了VN储能机理及制备方法,探讨了VN表面组成、结构和形貌对其比容量、倍率性能及循环稳定性的影响机制,总结了改善VN电化学性能的方法,着重介绍了构建微纳结构和构筑纳米复合材料两种策略。对于提高VN比容量和倍率性能,介绍了构建纳米晶、纳米带、纳米纤维、纳米棒等策略;对于提高VN导电性,介绍了构建VN/多孔碳、VN@碳、VN/碳纳米管、VN/石墨烯、VN/其他过渡金属氮化物等纳米复合材料策略,重点分析了微纳结构及构筑纳米复合材料对VN比容量、倍率性能及循环稳定性的影响机制。本文通过综述当前VN材料改进方法,分析了现有策略存在问题,展望了VN基电极材料的研究方向及发展趋势。

关键词: 氮化钒, 超级电容器, 电极材料, 纳米复合材料, 电化学性能

Abstract:

Vanadium nitride (VN) is considered an ideal electrode material for supercapacitors due to its extremely high theoretical specific capacity, good electronic conductivity, and wide operating voltage window. However, VN materials obtained through existing preparation methods often exhibit a small specific surface area, dense surface structure, and poor electrochemical activity, resulting in low actual specific capacity, poor rate performance, and short cycle life. This article summarizes the energy storage mechanisms and preparation methods of VN based on recent literature. In addition, the effects of surface composition, structure, and morphology on the specific capacity, rate performance, and cycling stability of VN are discussed. Strategies for improving the electrochemical performance of VN are presented, with a focus on constructing nano-microstructures and nanocomposites. Approaches such as fabricating nanocrystals, nanobelts, nanofibers, and nanorods are introduced to enhance specific capacity and rate performance. The construction of nanocomposites, including VN/porous carbon, VN@carbon, VN/carbon nanotubes, VN/graphene, and VN/other transition metal nitrides, is described as a means to improve the conductivity and overall performance of VN. Moreover, the impact mechanisms of these nano-microstructures and nanocomposites on specific capacity, rate performance, and cycling stability are analyzed. Existing challenges in current enhancement strategies are also discussed. Finally, future research directions and development trends for VN-based electrode materials are proposed.

Key words: vanadium nitride, supercapacitor, electrode materials, nanocomposites, electrochemical performance

中图分类号: