1 |
汤秀芬, 米晨. 通信后备锂电池组均衡充电方式的探析[J]. 电源技术, 2020, 44(9): 1348-1350, 1374.
|
|
TANG X F, MI C. Analysis of equalization charging modes of communications standby lithium-ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1348-1350, 1374.
|
2 |
黄威皓, 肖逸军, 焦冠文, 等. 油气场站通信后备电源优化方案与应用探讨[J]. 中国设备工程, 2022(11): 103-104.
|
|
HUANG W H, XIAO Y J, JIAO G W, et al. Exploration on the optimization scheme and application of communication backup power supply for oil and gas field stations[J]. China Plant Engineering, 2022(11): 103-104.
|
3 |
YI Tingfeng, MEI Jie, ZHU Yanrong. Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. Journal of Power Sources, 2016, 316: 85-105.
|
4 |
李国丽, 张永杰. 基于STM32的通信用后备锂电池组管理系统的研究与设计[J]. 电气自动化, 2012, 34(4): 18-19, 25.
|
|
LI G L, ZHANG Y J. A kind of back-up lithium-ion battery management system for telecommunications based on STM32[J]. Electrical Automation, 2012, 34(4): 18-19, 25.
|
5 |
黄涛, 谭晓军, 马钊. 基于锂电池的电信机房后备电源解决方案[J]. 电脑与电信, 2012(9): 29-31.
|
|
HUANG T, TAN X J, MA Z. Solution of telecommunication backup power system based on lithium-ion battery[J]. Computer & Telecommunication, 2012(9): 29-31.
|
6 |
李延涛, 张辉, 李艳杰. 磷酸铁锂电池在通信基站的应用研究[J]. 电源技术, 2017, 41(2): 202-204.
|
|
LI Y T, ZHANG H, LI Y J. Application of lithium batteries in communication base station[J]. Chinese Journal of Power Sources, 2017, 41(2): 202-204.
|
7 |
周朝霞. 一种锂电池并联型交直流一体化电源的研究[J]. 电工电气, 2022(6): 66-67.
|
|
ZHOU Z X. Research on a parallel AC-DC integrated power supply for lithium batteries[J]. Electrical Engineering, 2022(6): 66-67.
|
8 |
欧韦聪. 锂电池制造工艺控制及潜在问题分析[J]. 化工管理, 2021(32): 173-175.
|
|
OU W C. Lithium battery manufacturing process control and analysis of potential problems[J]. Chemical Management, 2021(32): 173-175.
|
9 |
MALEKI H, HOWARD J. Effects of overdischarge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources. 2006, 160(2): 1395-1402.
|
10 |
BELOV D, YANG M H. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid State Electrochemistry, 2008, 12(7/8): 885-894.
|
11 |
GUO R, LU L G, OUYANG M G, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248.
|
12 |
DUBARRY M, DEVIE A, LIAW B. Cell-balancing currents in parallel strings of a battery system[J]. Journal of Power Sources, 2016, 321: 36-46.
|
13 |
BRAND M, HOFMANNOF M, STEINHARDT M, et al. Current distribution within parallel-connected battery cells[J]. Journal of Power Sources, 2016, 334: 202-212.
|
14 |
PERISOARA L, GURAN I, COSTACHE D. A passive battery management system for fast balancing of four LiFePO4 cells[C]// 2018 24th IEEE International Symposium on Design and Technology in Electronic Packaging (SIITME), ROMANIA, IEEE, 2018: 390-393.
|
15 |
DURAISAMY T, KALIYA E D. Adaptive passive balancing in battery management system for e-mobility[J]. International Journal of Energy Research, 2021, 45(7): 10752-10764.
|
16 |
AIZPURU I, IRAOLA U, CANALES J M, et al. Passive balancing design for Li-ion battery packs based on single cell experimental tests for a CCCV charging mode[C]// 2013 International Conference on Clean Electrical Power (ICCEP). Alghero, Italy. IEEE, 2013: 93-98.
|
17 |
ZHANG Z L, GUI H D, GU D J, et al. A hierarchical active balancing architecture for lithium-ion batteries[J]. IEEE Transactions on Power Electronics, 2017, 32(4): 2757-2768.
|
18 |
LEE K M, LEE S W, CHOI Y G, et al. Active balancing of Li-ion battery cells using transformer as energy carrier[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1251-1257.
|
19 |
CONWAY T. An isolated active balancing and monitoring system for lithium ion battery stacks utilizing a single transformer per cell[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3727-3734.
|
20 |
MESTRALLET F, KERACHEV L, CREBIER J C, et al. Multiphase interleaved converter for lithium battery active balancing[J]. 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), 2012: 369-376.
|
21 |
FROST D F, HOWEY D A. Completely decentralized active balancing battery management system[J]. IEEE Transactions on Power Electronics, 2018, 33(1): 729-738.
|
22 |
BARONTI F, RONCELLA R, SALETTI R. Performance comparison of active balancing techniques for lithium-ion batteries[J]. Journal of Power Sources, 2014, 267: 603-609.
|
23 |
CHEN F, QIAO W, QU L Y. A modular and reconfigurable battery system[C]// 2017 IEEE Applied Power Electronics Conference and Exposition. Tampa, FL, USA. IEEE, 2017: 2131-2135.
|
24 |
KIM D, LEE J. Discharge scheduling for voltage balancing in reconfigurable battery systems[J]. Electronics Letters, 2017, 53(7): 496-498.
|
25 |
BARONTI F, FANTECHI G, RONCELLA R, et al. Design of a module switch for battery pack reconfiguration in high-power applications[C]// 2012 IEEE International Symposium on Industrial Electronics. Hangzhou, China. IEEE, 2012: 1330-1335.
|
26 |
陈弯, 赵子龙, 陈永真. 串联电池组电压均衡控制[J]. 技术与市场, 2015, 22(12): 178.
|
|
CHEN W, ZHAO Z L, CHEN Y Z. Voltage equalization control of series-connected battery packs [J]. Technology and Market, 2015, 22(12): 178.
|
27 |
马春艳, 王庆龙, 张迪, 等. 基于SOC的串联连接锂电池能量均衡控制研究[J/OL]. 电源学报, 2022 [2022-07-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.1535.010.html.
|
|
MA Chunyan, WANG Qinglong, ZHANG Di, et al. Research on SOC-based energy balancing control of series-connected lithium batteries[J/OL]. Journal of Power Supply, 2022 [2022-07-01]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220215.1535.010.html.
|
28 |
刘胜永, 于跃, 罗文广, 等. 基于SOC的锂电池组能量均衡控制策略研究[J]. 电源技术, 2017, 41(12): 1712-1714, 1717.
|
|
LIU S Y, YU Y, LUO W G, et al. Research on energy balancing control strategy of lithium battery pack based on SOC[J]. Chinese Journal of Power Sources, 2017, 41(12): 1712-1714, 1717.
|
29 |
倪贤钋, 秦菲菲, 卢陈雷, 等. 基于SOC估算的锂电池组复合型均衡拓扑设计[J]. 通信电源技术, 2020, 37(1): 63-68.
|
|
NI X P, QIN F F, LU C L, et al. Balanced topology design of lithium battery complex based on SOC estimation[J]. Telecom Power Technology, 2020, 37(1): 63-68.
|
30 |
戴震宇, 刘志茹, 贾金环, 等. 基于容量和电压的混合最优控制均衡[J]. 电子技术应用, 2019, 45(3): 108-112.
|
|
DAI Z Y, LIU Z R, JIA J H, et al. Mixed optimal control scheme based on capacity balance and voltage balance[J]. Application of Electronic Technique, 2019, 45(3): 108-112.
|
31 |
MENG J H, RICCO M, LUO G Z, et al. An overview and comparison of online implementable SOC estimation methods for lithium-ion battery[J]. IEEE Transactions on Industry Applications, 2018, 54(2): 1583-1591.
|
32 |
MOO C S, NG K S, HSIEH Y C. Parallel operation of battery power modules[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 701-707.
|
33 |
CAO Y, ABU Q J A. Evaluation of bi-directional single-inductor multi-input battery system with state-of-charge balancing control[J]. IET Power Electronics, 2018, 11(13): 2140-2150.
|
34 |
UR REHMAN M M, EVZELMAN M, HATHAWAY K, et al. Modular approach for continuous cell-level balancing to improve performance of large battery packs[C]// 2014 IEEE Energy Conversion Congress and Exposition. Pittsburgh, PA, USA. IEEE, 2014: 4327-4334.
|
35 |
LOU T T, ZHANG W G, GUO H Y, et al. The internal resistance characteristics of lithium-ion battery based on HPPC method[J]. Advanced Materials Research. 2012, 455/456: 246-251.
|
36 |
HENTUNEN A, LEHMUSPELTO T, SUOMELA J. Time-domain parameter extraction method for thévenin-equivalent circuit battery models[J]. IEEE Transactions on Energy Conversion, 2014, 29(3): 558-566.
|