储能科学与技术 ›› 2023, Vol. 12 ›› Issue (6): 1913-1919.doi: 10.19799/j.cnki.2095-4239.2023.0116

• 储能系统与工程 • 上一篇    下一篇

基于改进野狗优化算法的电动汽车调峰策略

蔡新雷1(), 祝锦舟1, 刘霡2, 刘佳乐1, 孟子杰1, 余洋2()   

  1. 1.广东电网有限责任公司电力调度控制中心,广东 广州 510600
    2.新能源电力系统国家重点 实验室(华北电力大学(保定)),河北 保定 071003
  • 收稿日期:2023-03-06 修回日期:2023-04-13 出版日期:2023-06-05 发布日期:2023-06-21
  • 通讯作者: 余洋 E-mail:517665114@qq.com;ncepu_yy@163.com
  • 作者简介:蔡新雷(1986—),男,硕士,高级工程师,研究方向为电力系统运行控制,E-mail:517665114@qq.com
  • 基金资助:
    南方电网公司科技项目(036000KK52220004)

Peak shaving strategy of electric vehicles based on an improved Dingo optimization algorithm

Xinlei CAI1(), Jinzhou ZHU1, Mai LIU2, Jiale LIU1, Zijie MENG1, Yang YU2()   

  1. 1.Electric Power Dispatching Control Center of Guangdong Grid Co. Ltd. , Guangzhou 510600, Guangdong, China
    2.State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, Hebei, China
  • Received:2023-03-06 Revised:2023-04-13 Online:2023-06-05 Published:2023-06-21
  • Contact: Yang YU E-mail:517665114@qq.com;ncepu_yy@163.com

摘要:

针对新能源接入导致电网峰谷差变大的问题,同时考虑分时电价和碳收益的影响,本工作提出基于改进野狗优化算法(IDOA)的电动汽车调峰策略。首先,设计执行策略动态选择的IDOA,以提升原始野狗优化算法的寻优精度和寻优速度;其次,建立考虑负荷峰谷差、充电成本、放电收益和出售碳配额收益的电动汽车参与调峰优化调度模型,并以惩罚项的形式将约束条件引入优化调度模型形成寻优价值函数,使用IDOA求解该价值函数;最后,对提出的IDOA和优化调度模型进行了仿真验证,结果表明,与其他4种算法相比,IDOA在寻优速度、准确性和鲁棒性上均具有良好效果,IDOA求解调峰模型降低了电网负荷峰谷差,同时也减轻了车主用车成本。

关键词: 电动汽车, 调峰策略, 碳收益, 改进野狗优化算法, 优化调度

Abstract:

Aiming at the problem that the new energies lead to an increase in the peak-valley difference of the power grid and considering the influence of time-of-use electricity price and carbon income, this study proposes an electric vehicle peak-shaving strategy based on the Improved Dingo Optimization Algorithm (IDOA). First, the IDOA dynamically selected by the execution strategy is designed to improve the optimization accuracy and speed of the original Dingo optimization algorithm. Second, an optimal scheduling model of electric vehicles participating in peak load regulation is established, considering the peak-valley difference in load, charging cost, discharging income, and sales carbon quota income. The constraint conditions are introduced into the optimal scheduling model as a penalty term to form the optimization value function that IDOA solves. Finally, the proposed IDOA and optimal scheduling model are simulated and verified. The results show that IDOA has good results in optimization speed, accuracy, and robustness compared to the other four algorithms. The peaking model solved by IDOA reduces the peak-valley difference of power grid load and lowers car owners' costs.

Key words: electric vehicles, peak regulation strategy, carbon earnings, improved dingo optimization algorithm, optimal schedule

中图分类号: