储能科学与技术 ›› 2024, Vol. 13 ›› Issue (5): 1496-1515.doi: 10.19799/j.cnki.2095-4239.2023.0854
收稿日期:
2023-11-28
修回日期:
2023-12-22
出版日期:
2024-05-28
发布日期:
2024-05-28
通讯作者:
路胜利,徐喜连
E-mail:222203855035@zust.edu.cn;lushengli@zust.edu.cn;xuxilian@zust.edu.cn
作者简介:
李万瑞(1999—),女,硕士研究生,研究方向为水系锌离子电池正极材料改性,E-mail:222203855035@zust.edu.cn;
基金资助:
Wanrui LI(), Wenjun LI, Xiaoqing WANG, Shengli LU(), Xilian XU()
Received:
2023-11-28
Revised:
2023-12-22
Online:
2024-05-28
Published:
2024-05-28
Contact:
Shengli LU, Xilian XU
E-mail:222203855035@zust.edu.cn;lushengli@zust.edu.cn;xuxilian@zust.edu.cn
摘要:
水系锌离子电池(AZIBs)由于其理论比容量高、安全性高、成本低、制造工艺简单和环境友好等特性在电化学储能领域展现出巨大应用潜力。锰/钒基氧化物因其价态丰富、结构优异、比容量高等优点成为最具潜力的锌离子电池正极材料。然而,它们的本征导电性差、锌离子扩散动力学缓慢、电化学过程中的溶解和结构塌陷等限制了其进一步发展和实际应用。缓解上述问题的一种有效方法是将锰/钒基氧化物与不同功能性的组分结合构筑异质结构。原因在于,获得的异质结构能够借助各组分的特点和具有显著物化特性的异质界面,实现多功能性和协同效应,从而实现高效的储锌性能。基于此,本综述总结了锰/钒基氧化物正极材料面临的主要挑战,重点介绍了近年来已报道锰/钒基氧化物异质结构的类型、特点、制备方法及储锌性能增强机制等。最后,本文对水系锌离子电池用异质结构正极材料未来的发展进行了展望,以期为高性能锌离子电池电极材料的开发提供新的思路。
中图分类号:
李万瑞, 李文俊, 王小青, 路胜利, 徐喜连. 锌离子电池用锰/钒基氧化物异质结构正极的研究进展[J]. 储能科学与技术, 2024, 13(5): 1496-1515.
Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515.
表1
金属掺杂锰/钒基氧化物异质结构及其储锌性能"
Cathodes | Voltage/V | Capacity (mAh/g@A/g) | Cycling performance (cycles@A/g) | Electrolyte | Ref. |
---|---|---|---|---|---|
Ag-V2O5 | 0.2~1.6 | 200@0.2, 96@1 | 80(700@3) | 3 mol/L Zn(CF3SO3)2 | [ |
Ag-V2O5 | 0.2~1.6 | 426@0.1, 326.1@5 | 270(2000@5) | 2 mol/L Zn(CF3SO3)2 | [ |
Al-VOH | 0.2~1.6 | 380@0.05, 245@4 | 236.5(3000@4) | 3 mol/L Zn(CF3SO3)2 | [ |
Mg-MnO2 | 1.0~1.8 | 370@0.6, 172@6 | 95(10000@1.5) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
δ-Ca0.25V2O5·nH2O/ δ-Zn0.25V2O5·nH2O | 0.6~1.6 | 340@0.2C, 289@1C | 68(3000@80C) | 1 mol/L ZnSO4 | [ |
FeVO | 0.2~1.6 | 214.4@0.5, 201.6@3 | 221.6(650@1) | 3 mol/L Zn(CF3SO3)2 | [ |
Li3(V6O16) | 0.3~1.8 | 350@0.1, 189.8@1 | 189.8(1000@1) | 3 mol/L Zn(CF3SO3)2 | [ |
Na6V10O28 | 0.2~1.9 | 279.5@0.1, 60@2 | 143(2000@2) | 3 mol/L Zn(CF3SO3)2 | [ |
NH4V4O10 | 0.4~1.4 | 361.6@1, 252.8@10 | 255.5(1000@10) | 2 mol/L ZnSO4 | [ |
δ-Ni0.25V2O5 | 0.3~1.7 | 402@0.2, 218.3@5 | 214(1200@5) | 3 mol/L ZnSO4 | [ |
Mg0.34V2O5·0.84H2O | 0.1~1.8 | 353@0.1, 264@1 | 84(2000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Na0.33V2O5 | 0.2~1.6 | 367.1@0.1, 96.4@2 | 218.4(1000@1) | 3 mol/L Zn(CF3SO3)2 | [ |
Zn0.3V2O5·1.5H2O | 0.3~1.6 | 426@0.2, 265.2@10 | 214(20000@10) | 3 mol/L Zn(CF3SO3)2 | [ |
Cu0.06MnO2·1.7H2O | 0.8~1.9 | 493.3@0.1, 350@0.5 | 363.7(150@0.5) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
Bi0.09MnO2·1.5H2O | 0.8~1.9 | 175.5@0.1, 116.1@1 | 114.5(1100@1) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
Cu-Mn3O4 | 0.8~1.9 | 250@0.1, 45@1 | 110(900@0.6) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
KMgVOH | 0.2~1.5 | 423@0.1, 318@4 | 222(2000@4) | 3 mol/L Zn(CF3SO3)2 | [ |
Al2.65V6O13·2.07H2O | 0.2~1.4 | 571.7@1, 205.7@5 | 183.5(2000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
AlMO | 0.8~1.8 | 311.2@0.1, 145.2@5 | 125.3(15000@4) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
Na6[V10O28]·nH2O | 0.2~1.5 | 228.5@0.1, 84.6@10 | 119.4(3000@10) | 2 mol/L Zn(CF3SO3)2 | [ |
NaV8O20·xH2O | 0.4~1.4 | 417@0.1, 111@80 | 214(1600@10) | 3 mol/L Zn(CF3SO3)2 | [ |
δ-K0.49V2O5 | 0.3~1.5 | 361@0.2, 150@5 | 154(2000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Ag0.33V2O5 | 0.1~1.6 | 311@0.1, 107@5 | 144(500@2) | 3 mol/L Zn(CF3SO3)2 | [ |
Cu0.95V2O5 | 0.2~1.6 | 405@0.1, 195@5 | 200(1000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
HNaV6O16·4H2O | 0.2~1.6 | 444@0.5, 328@5 | 307(1000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
表2
目前已报道的锰/钒基氧化物/碳材料异质结构正极及其储锌性能"
Cathodes | Voltage/V | Capacity (mAh/g@A/g) | Cycling performance (cycles@A/g) | Electrolyte | Ref. |
---|---|---|---|---|---|
VOH-rG | 0.2~1.6 | 466@0.1, 190@20 | 267(5000@10) | 2 mol/L Zn(CF3SO3)2 | [ |
δ-MnO2-C NA/CC | 0.8~1.8 | 346.7@0.5, 187.8@4 | 147(50000@4) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
0.3~1.9 | 448@0.15, 170@10 | 176(1500@10) | 3 mol/L Zn(CF3SO3)2 | [ | |
Cu0.26V2O5@C | 0.3~1.6 | 330@0.2, 163.8@2 | 175(500@2) | 3 mol/L Zn(CF3SO3)2 | [ |
Ni0.006Ca0.0045VO2@C | 0.3~1.8 | 433.8@0.1, 158.8@5 | 74(4000@5) | 2 mol/L ZnSO4 | [ |
VO2@C | 0.2~1.4 | 281@0.2, 202@5 | 195(1000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Mn3O4@HCFs | 0.9~1.85 | 215.8@0.3, 115.7@2 | 225(1300@0.4) | 2 mol/L ZnSO4+0.15 mol/L MnSO4 | [ |
MnO2@CNTs/CNHs | 1.0~1.9 | 343@0.3, 191.3@3 | 162.3(500@3) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
NiMn2O4@C | 1.0~1.85 | 139.7@0.05, 98.5@1.2 | 128.8(850@0.4) | 2 mol/L ZnSO4+0.15 mol/L MnSO4 | [ |
B-V2O3@C | 0.2~1.4 | 422@0.2, 349@2.5 | 84(2000@5) | 2 mol/L Zn(CF3SO3)2 | [ |
V2O3@C | 0.3~1.5 | 350@0.1, 250@2 | 161(4000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O3-C | 0.2~1.8 | 415@0.1, 349@1 | 260(100@0.1) | 3 mol/L Zn(CF3SO3)2 | [ |
H-VO2@CC | 0.1~1.3 | 350@0.1, 192@4 | 150(4500@4) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5@void@V2O5@CFs | 0.1~1.8 | 499@0.5, 387@16 | 455(100@4) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5@CFC | 0.005~2.0 | 293@0.05, 91@4 | 154(1000@0.5) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
MnO@C | 0.3~1.8 | 456@0.05, 160@2 | 128(2000@2) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
MnO@C | 0.8~1.8 | 210@0.1, 111@1 | 120.2(4500@1) | 3 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
V2O5@CNT | 0.2~1.7 | 312@1, 232@10 | 261(2000@1) | 1 mol/L ZnSO4 | [ |
α-MnO2@CNT | 1.0~1.8 | 308.5@0.97C, 69.5@97.4C | 163(1000@32.5C) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
Zn x MnO2@CNTs | 0.8~1.8 | 400@0.1, 148@3 | 300(100@1) | 3 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
CNTs@Mn3O4 | 0.8~1.8 | 310@0.1, 116@2 | 123(500@1) | 3 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
CuV2O6@RCNTs | 0.3~1.5 | 353@0.1, 121.5@5 | 174.7(1400@5) | 3 mol/L Zn(CF3SO3)2 | [ |
KV3O8·0.75H2O@SWCNT | 0.3~1.3 | 379@0.1, 206@5 | 200(10000@5) | 4 mol/L Zn(CF3SO3)2 | [ |
MnO2@MNH-CNT | 1.0~1.8 | 236@0.4, 108@1.6 | 140(100@0.4) | 1 mol/L ZnSO4 | [ |
V2O5@CNT | 0.2~1.6 | 375@0.5, 279@10 | 168.5(500@10) | 2 mol/L ZnSO4 | [ |
ZnMn2O4@CNT | 0.4~1.8 | 220.3@0.1, 136.5@1 | 74.7(2000@3) | 1 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
α-MnO2@CNT HMs | 1.0~1.85 | 296@0.2, 80@3 | 82.9(10000@3) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
α-V2O5@CNT | 0.2~1.8 | 480@0.5, 353@15 | 158(1000@30) | 3 mol/L Zn(CF3SO3)2 | [ |
S-ZnMn2O4/CNTs | 0.8~1.8 | 175.1@0.5, 128.4@1 | 91.7(800@1.5) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
RGO@VO2 | 0.3~1.3 | 276@0.1, 120@35 | 240(1000@4) | 3 mol/L Zn(CF3SO3)2 | [ |
CuV2O6@RGO | 0.3~1.6 | 427@0.1, 241@5 | 285(200@2) | 3 mol/L Zn(CF3SO3)2 | [ |
MnO2@G | 1.0~1.9 | 317@0.1, 112@7.5 | 186(2000@2) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
β-MnO2@GO | 1.05~1.8 | 312.4@0.25C, 94.9@10C | 129.6(2000@4C) | 3 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
γ-MnO2@G | 0.8~1.8 | 301@0.5, 95.8@10 | 64(300@1) | 2 mol/L ZnSO4+0.4 mol/L MnSO4 | [ |
MnO2@rGO | 1.0~1.9 | 332.2@0.3, 172.3@6 | 165.4(500@6) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
Na/MnO2@GCF | 1.0~1.8 | 381.8@0.1, 94.8@3 | 188(1000@1) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
P-MnO2-x @VMG | 1.0~1.8 | 302.8@0.5, 150.1@10 | 185.8(1000@2) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
ZnMn2O4@NG | 0.8~1.8 | 221@0.1, 110@1 | 74(2500@1) | 1 mol/L ZnSO4+0.05 mol/L MnSO4 | [ |
rGO@HM-ZnMn2O4 | 0.8~1.8 | 188@0.3, 59@2 | 72.7(650@1) | 1 mol/L ZnSO4+0.05 mol/L MnSO4 | [ |
δ-Na x V2O5·nH2O@G | 0.2~1.6 | 433.5@0.1, 244.1@5 | 215(1000@2) | 3 mol/L Zn(CF3SO3)2 | [ |
H11Al2V6O23.2@G | 0.4~1.4 | 305.4@1, 180.6@10 | 131.7(400@2) | 2 mol/L ZnSO4 | [ |
Na1.1V3O7.9@rGO | 0.4~1.4 | 220@0.3, 72@2 | 84.8(500@1) | 1 mol/L Zn(CF3SO3)2 | [ |
Od-VO2@rG | 0.2~1.4 | 376@0.1, 116@20 | 186(5000@10) | 2 mol/L Zn(CF3SO3)2 | [ |
Ov-PVO@G | 0.2~1.6 | 583.1@0.2, 372.3@20 | 448.3(3000@10) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5@EGO | 0.2~1.6 | 462@0.2, 334@5 | 187(3000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5/VG/CC | 0.2~1.6 | 370@0.2, 216@50 | 278(5000@2) | 3 mol/L ZnSO4 | [ |
Na5V12O32@G | 0.2~1.6 | 220@0.3, 104.2@5 | 105(4400@5) | 2 mol/L Zn(CF3SO3)2 | [ |
VO2(B)/GO | 0.3~1.7 | 423@0.5, 371@3 | 227(2750@15) | 3 mol/L Zn(CF3SO3)2 | [ |
表3
目前已报道的锰/钒基氧化物/导电聚合物异质结构正极及其电化学性能"
Cathodes | Voltage/V | Capacity (mAh/g @A/g) | Cycling performance (cycles@A/g) | Electrolyte | Ref. |
---|---|---|---|---|---|
V2O5@PEDOT | 0.2~1.4 | 370.5@0.5, 175@50 | 310.1(1000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Od-V2O5@PEDOT | 0.3~1.6 | 449@0.2, 358@10 | 318(6000@10) | 3 mol/L Zn(CF3SO3)2 | [ |
NH4V3O8@PEDOT | 0.4~1.6 | 356.8@0.05, 163.6@10 | 160.6(5000@10) | 3 mol/L ZnCF3SO3 | [ |
VO@PEDOT | 0.3~1.4 | 390@0.3, 100@20 | 170(1000@5) | 3 mol/L ZnSO4 | [ |
V2O5@PEDOT/CC | 0.2~1.6 | 360@0.1, 232@20 | 223.6(1000@5) | 2.5 mol/L Zn(CF3SO3)2 | [ |
Na0.76V6O15@PEDOT | 0.3~1.5 | 355@0.05, 165@4 | 168(2600@4) | 3 mol/L ZnSO4+3 mol/L Zn(CF3SO3)2 | [ |
(NH4)2V6O16·1.5H2O@PEDOT | 0.2~1.8 | 344@0.5, 155@20 | 209(1000@10) | 2.5 mol/L Zn(CF3SO3)2 | [ |
V2O5@PPy | 0.3~1.6 | 441@0.1, 291@5 | 304(2000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Mn2O3@PPy | 0.8~1.8 | 337.9@0.1, 77.6@3.2 | 73.5(3000@3) | 3 mol/L ZnSO4+0.5 mol/L MnSO4 | [ |
MnO2/Mn2O3@PPy | 1.0~1.85 | 289.8@0.2, 199.8@3 | 253(1000@1) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
Fe/α-MnO2@PPy | 0.8~1.9 | 270@0.1, 73@1 | 280(100@0.1) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
β-MnO2@PPy | 0.8~1.8 | 361.8@0.2, 69.9@1.5 | 361.8(160@0.2) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
MnO x @PPy | 0.4~1.9 | 302@0.15, 159.9@3 | 113.7(1000@6) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
V2O5·nH2O@PPy | 0.2~1.5 | 383@0.1, 281@2 | 203(2000@4) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5@PPy | 0.3~1.5 | 374@0.2, 241@5 | 220(2000@10) | 3 mol/L Zn(CF3SO3)2 | [ |
PANI@MnO2/CC | 0.8~1.8 | 286@0.5, 177@4 | 158(9000@4) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
MnO2@PANI | 1.0~1.8 | 280@0.2, 110@3 | 125(5000@2) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
MnVO@PANI | 0.3~1.6 | 462@0.1, 290@5 | 246.5(10000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
Mg/PANI/V2O5·nH2O | 0.2~1.6 | 424@0.5, 158@6 | 78(1000@10) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5·H2O@PANI | 0.4~1.6 | 346@0.3, 186@5 | 223(800@3) | 3 mol/L Zn(TfO)2+6 mol/L LiTFSI | [ |
V2O5-x @PANI | 0.4~1.6 | 283@1, 234@16 | 201(1000@1) | 2 mol/L ZnSO4 | [ |
SP@PDA-d-δ-MnO2 | 1.0~1.8 | 483@0.2, 80.3@2 | 73.3(500@1) | 2 mol/L ZnSO4 | [ |
VO-DP | 0.2~1.6 | 473@0.05, 144@10 | 117.5(15000@10) | 2 mol/L Zn(OTF)2 | [ |
表4
锰/钒基氧化物/金属氧化物异质结构正极及其电化学储锌性能"
Cathodes | Voltage/V | Capacity (mAh/g@A/g) | Cycling performance (cycles@A/g) | Electrolyte | Ref. |
---|---|---|---|---|---|
VO2@V2O5 | 0.2~1.6 | 435.4@0.2, 167.5@10 | 126.8(1500@10) | 3 mol/L Zn(CF3SO3)2 | [ |
VO2@V2O5 | 0.2~1.6 | 401@0.1, 178@5 | 167(2000@5) | 2 mol/L ZnSO4 | [ |
V3O7@V6O13 | 0.2~1.4 | 445@0.1, 376@2 | 259(1000@1) | 3 mol/L Zn(CF3SO3)2 | [ |
V2O5@NaV6O15 | 0.4~1.4 | 399@0.1, 275.8@1 | 164(2000@5) | 3 mol/L ZnSO4 | [ |
V2O5@NaV6O15 | 0.2~1.8 | 390@0.3, 253.8@5 | 264(3000@5) | 2 mol/L Zn(CF3SO3)2 | [ |
Al2O3@(NH4)2V4O9 | 0.2~1.6 | 269@0.5, 200@5 | 173(3000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
(NH4)2Co2V10O28·16H2O/ (NH4)2V10O25·8H2O | 0.2~1.8 | 367.7@0.1, 214@1 | 201.3(1000@1) | 3 mol/L ZnSO4 | [ |
Zn3V3O8@ZnO@NC | 0.2~1.6 | 216.3@0.5, 183@3 | 120.5(2000@5) | 3 mol/L Zn(CF3SO3)2 | [ |
ZnMn2O4@Mn2O3 | 0.8~1.9 | 82.6@0.5, 42.1@3.2 | 111.9(300@0.5) | 1 mol/L ZnSO4 | [ |
ZnMn2O4@MnOOH | 0.8~1.85 | 336.7@0.1, 98.5@5 | 81.9(1000@1) | 2 mol/L ZnSO4+0.2 mol/L MnSO4 | [ |
CeO2/MnO x @C | 0.8~1.8 | 365@0.05, 70@2 | 130(800@0.5) | 3 mol/L Zn(CF3SO3)2+0.1 mol/L MnSO4 | [ |
Sn x MnO2@SnO2 | 0.8~1.8 | 316.1@0.3, 179.4@2 | 153.4(2000@2) | 2 mol/L ZnSO4+0.1 mol/L MnSO4 | [ |
ZnMn2O4@Mn2O3 | 0.8~1.8 | 247.4@0.1, 120.2@5 | 108(2000@3) | 2 mol/L Zn(CF3SO3)2+0.1 mol/L MnSO4 | [ |
V2O3/V3O5/Zn2VO4@NC | 0.2~1.5 | 358@0.2, 95.8@5 | 100.1(3000@5) | 2 mol/L ZnSO4 | [ |
95 | SU Z H, WANG R H, HUANG J H, et al. Silver vanadate (Ag0.33V2O5) nanorods from Ag intercalated vanadium pentoxide for superior cathode of aqueous zinc-ion batteries[J]. Rare Metals, 2022, 41(8): 2844-2852. |
96 | YU X, HU F, GUO Z Q, et al. High-performance Cu0.95V2O5 nanoflowersas cathode materials for aqueous zinc-ion batteries[J]. Rare Metals, 2022, 41(1): 29-36. |
97 | GUAN C, HU F, YU X, et al. High performance of HNaV6O16·4H2O nanobelts for aqueous zinc-ion batteries with in situ phase transformation by Zn(CF3SO3)2 electrolyte[J]. Rare Metals, 2022, 41(2): 448-456. |
98 | LUO H, WANG B, WU F D, et al. Synergistic nanostructure and heterointerface design propelled ultra-efficient in situ self-transformation of zinc-ion battery cathodes with favorable kinetics[J]. Nano Energy, 2021, 81: 105601. |
99 | XU X L, CHEN Y, LI W R, et al. Achieving ultralong-cycle zinc-ion battery via synergistically electronic and structural regulation of a MnO2 nanocrystal-carbon hybrid framework[J]. Small, 2023, 19(10): e2207517. |
100 | LI C L, LI M, XU H T, et al. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in situ electrochemical induction for high-performance aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 623: 277-284. |
101 | WANG X W, ZHANG B, FENG J M, et al. Cu-MOF-derived and porous Cu0.26V2O5@C composite cathode for aqueous zinc-ion batteries[J]. Sustainable Materials and Technologies, 2020, 26: e00236. |
102 | ZHAO X, MAO L, CHENG Q H, et al. Dual-cation preintercalated and amorphous carbon confined vanadium oxides as a superior cathode for aqueous zinc-ion batteries[J]. Carbon, 2022, 186: 160-170. |
103 | YANG M, WANG Y Y, SUN Z W, et al. Anti-aggregation growth and hierarchical porous carbon encapsulation enables the C@VO2 cathode with superior storage capability for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2022, 67: 645-654. |
104 | LONG J, YANG Z H, YANG F H, et al. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries[J]. Electrochimica Acta, 2020, 344: 136155. |
105 | HUANG Y, LI Z X, JIN S Y, et al. Carbon nanohorns/nanotubes: An effective binary conductive additive in the cathode of high energy-density zinc-ion rechargeable batteries[J]. Carbon, 2020, 167: 431-438. |
106 | LONG J, GU J X, YANG Z H, et al. Highly porous, low band-gap NixMn3– xO4(0.55≤x≤1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(30): 17854-17866. |
107 | LIU X D, WANG Z Q, NIU Y L, et al. Scalable synthesis of novel V2O3/carbon composite as advanced cathode material for aqueous zinc-ion batteries[J]. Ceramics International, 2022, 48(11): 15594-15602. |
108 | DING Y C, PENG Y Q, CHEN S H, et al. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44109-44117. |
109 | WANG J X, LI G S, LIU X Q, et al. In-situ electrochemical oxidization of V2O3-C cathode for boosted zinc-ion storage performance[J]. Applied Surface Science, 2023, 616: 156481. |
110 | LUO P, ZHANG W W, CAI W Y, et al. Accelerated ion/electron transport kinetics and increased active sites via local internal electric fields in heterostructured VO2 - carbon cloth for enhanced zinc-ion storage[J]. Nano Research, 2023, 16(1): 503-512. |
111 | XIONG L, QU Z L, SHEN Z Y, et al. In situ construction of ball-in-ball structured porous vanadium pentoxide intertwined with carbon fibers induces superior electronic/ionic transport dynamics for aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2022, 615: 184-195. |
112 | XU N, YAN C Y, HE W, et al. Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery[J]. Journal of Power Sources, 2022, 533: 231358. |
113 | LI C L, LI M, XU H T, et al. Hierarchical accordion-like manganese oxide@carbon hybrid with strong interaction heterointerface for high-performance aqueous zinc ion batteries[J]. Journal of Colloid and Interface Science, 2022, 628: 553-561. |
114 | ZHU Z X, LIN Z W, SUN Z W, et al. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries[J]. Rare Metals, 2022, 41(11): 3729-3739. |
115 | YIN B S, ZHANG S W, KE K, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery[J]. Nanoscale, 2019, 11(42): 19723-19728. |
116 | BI S, WU Y, CAO A, et al. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance[J]. Materials Today Energy, 2020, 18: 100548. |
117 | REN G Y, LUO Z Q, DUAN Y Q, et al. Carbon nanotube@Mn3O4 composite as cathode for high-performance aqueous zinc ion battery[J]. Journal of Alloys and Compounds, 2022, 898: 162747. |
118 | SONG J L, WANG W J, FANG Y, et al. Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries[J]. Applied Surface Science, 2022, 578: 152053. |
1 | CHEN J H, NAVEED A, NULI Y N, et al. Designing an intrinsically safe organic electrolyte for rechargeable batteries[J]. Energy Storage Materials, 2020, 31: 382-400. |
2 | SHI W X. Renewable energy: Finding solutions for a greener tomorrow[J]. Reviews in Environmental Science and Bio/Technology, 2010, 9(1): 35-37. |
3 | FANG G Z, ZHOU J, PAN A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501. |
4 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
5 | CHEN R J, LUO R, HUANG Y X, et al. Advanced high energy density secondary batteries with multi-electron reaction materials[J]. Advanced Science, 2016, 3(10): 1600051. |
6 | XU C J, CHEN Y Y, SHI S, et al. Secondary batteries with multivalent ions for energy storage[J]. Scientific Reports, 2015, 5: 14120. |
7 | JEONG G, KIM Y U, KIM H, et al. Prospective materials and applications for Li secondary batteries[J]. Energy & Environmental Science, 2011, 4(6): 1986-2002. |
8 | FLAMME B, RODRIGUEZ GARCIA G, WEIL M, et al. Guidelines to design organic electrolytes for lithium-ion batteries: Environmental impact, physicochemical and electrochemical properties[J]. Green Chemistry, 2017, 19(8): 1828-1849. |
9 | KIM D J, YOO D J, OTLEY M T, et al. Rechargeable aluminium organic batteries[J]. Nature Energy, 2019, 4: 51-59. |
10 | DEMIR-CAKAN R, PALACIN M R, CROGUENNEC L. Rechargeable aqueous electrolyte batteries: From univalent to multivalent cation chemistry[J]. Journal of Materials Chemistry A, 2019, 7(36): 20519-20539. |
11 | PASTA M, WESSELLS C D, HUGGINS R A, et al. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage[J]. Nature Communications, 2012, 3: 1149. |
12 | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
PEI Y W, ZHANG H, WANG X H. Recent advances in the electrolytes of rechargeable zinc-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. | |
119 | WAN F, HUANG S, CAO H M, et al. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries[J]. ACS Nano, 2020, 14(6): 6752-6760. |
120 | KHAMSANGA S, NGUYEN M T, YONEZAWA T, et al. MnO2 heterostructure on carbon nanotubes as cathode material for aqueous zinc-ion batteries[J]. International Journal of Molecular Sciences, 2020, 21(13): 4689. |
121 | LI Y K, HUANG Z M, KALAMBATE P K, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery[J]. Nano Energy, 2019, 60: 752-759. |
122 | GAO F, MEI B, XU X Y, et al. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 448: 137742. |
123 | LIU Y Z, CHI X W, HAN Q, et al. α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries[J]. Journal of Power Sources, 2019, 443: 227244. |
124 | WANG Z Y, LI L N, ZHAO F, et al. Hierarchical amorphous vanadium oxide and carbon nanotubes microspheres with strong interface interaction for Superior performance aqueous Zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 645: 542. |
125 | YANG Y T, SHAO T, ZHANG Y, et al. Anionic S-doping of a ZnMn2O4/CNTs cathode material enhances its Zn2+ storage performance in aqueous zinc-ion batteries[J]. Journal of Power Sources, 2023, 564: 232863. |
126 | DAI X, WAN F, ZHANG L L, et al. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance[J]. Energy Storage Materials, 2019, 17: 143-150. |
127 | LIU Y Y, LI Q, MA K X, et al. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries[J]. ACS Nano, 2019, 13(10): 12081-12089. |
128 | WANG J J, WANG J G, LIU H Y, et al. A highly flexible and lightweight MnO2/graphene membrane for superior zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(7): 2007397. |
129 | DING S X, ZHANG M Z, QIN R Z, et al. Oxygen-deficient β-MnO2@Graphene oxide cathode for high-rate and long-life aqueous zinc ion batteries[J]. Nano-Micro Letters, 2021, 13(1): 173. |
130 | WANG C, ZENG Y X, XIAO X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. Journal of Energy Chemistry, 2020, 43: 182-187. |
13 | BIN D, WANG F, TAMIRAT A G, et al. Progress in aqueous rechargeable sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703008. |
14 | WANG F, FAN X L, GAO T, et al. High-voltage aqueous magnesium ion batteries[J]. ACS Central Science, 2017, 3(10): 1121-1128. |
15 | GHEYTANI S, LIANG Y L, WU F L, et al. An aqueous Ca-ion battery[J]. Advanced Science, 2017, 4(12): 1700465. |
16 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
17 | YANG C Y, CHEN J, QING T T, et al. 4.0V aqueous Li-ion batteries[J]. Joule, 2017, 1(1): 122-132. |
18 | SU D W, MCDONAGH A, QIAO S Z, et al. High-capacity aqueous potassium-ion batteries for large-scale energy storage[J]. Advanced Materials, 2017, 29(1)1604007 |
19 | BLANC L E, KUNDU D P, NAZAR L F. Scientific challenges for the implementation of Zn-ion batteries[J]. Joule, 2020, 4(4): 771-799. |
20 | CHEN L N, RUAN Y S, ZHANG G B, et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction[J]. Chemistry of Materials, 2019, 31(3): 699-706. |
21 | SONG M, TAN H, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Advanced Functional Materials, 2018, 28(41): 1802564. |
22 | LI C G, ZHANG X D, HE W, et al. Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications[J]. Journal of Power Sources, 2020, 449: 227596. |
23 | FANG G Z, ZHU C Y, CHEN M H, et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery[J]. Advanced Functional Materials, 2019, 29(15): 1808375. |
24 | HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9: 2906. |
25 | JIANG B Z, XU C J, WU C L, et al. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life[J]. Electrochimica Acta, 2017, 229: 422-428. |
131 | HUANG Y, LIU J W, HUANG Q Y, et al. Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode[J]. NPJ Flexible Electronics, 2018, 2: 21. |
132 | WU Y Z, WANG M C, TAO Y, et al. Electrochemically derived graphene-like carbon film as a superb substrate for high-performance aqueous Zn-ion batteries[J]. Advanced Functional Materials, 2020, 30(5): 1907120. |
133 | ZHANG Y, DENG S J, PAN G X, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage[J]. Small Methods, 2020, 4(6): 1900828. |
134 | CHEN L L, YANG Z H, QIN H G, et al. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery[J]. Journal of Power Sources, 2019, 425: 162-169. |
135 | CHEN L L, YANG Z H, QIN H G, et al. Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries[J]. Electrochimica Acta, 2019, 317: 155-163. |
136 | ZHANG W Y, LIANG S Q, FANG G Z, et al. Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts[J]. Nano-Micro Letters, 2019, 11(1): 69. |
137 | CAI Y S, LIU F, LUO Z G, et al. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode[J]. Energy Storage Materials, 2018, 13: 168-174. |
138 | LUO H, WANG B, WANG C L, et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance[J]. Energy Storage Materials, 2020, 33: 390-398. |
139 | YANG H Y, WANG Y, WANG P P, et al. Three-in-one organic-inorganic heterostructures: From scalable ball-milling synthesis to freestanding cathodes with high areal capacity for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2023, 457: 141140. |
140 | ZHANG Y B, QIN J D, BATMUNKH M, et al. Scalable spray drying production of amorphous V2O5-EGO 2D heterostructured xerogels for high-rate and high-capacity aqueous zinc ion batteries[J]. Small, 2022, 18(10): 2105761. |
141 | ZHANG X, TANG Y C, HE P G, et al. Edge-rich vertical graphene nanosheets templating V2O5 for highly durable zinc ion battery[J]. Carbon, 2021, 172: 207-213. |
142 | RAO L, ZHOU Z, LIU H B, et al. In-situ electrochemical conversion of Na5V12O32@graphene for enhanced cycle stability in aqueous zinc ion batteries[J]. Journal of Colloid and Interface Science, 2023, 629: 473-481. |
26 | ZHANG N, JIA M, DONG Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries[J]. Advanced Functional Materials, 2019, 29(10): 1807331. |
27 | LI Y, YANG W, YANG W, et al. High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes[J]. Journal of Energy Chemistry, 2021, 60: 233-240. |
28 | QI Z C, XIONG T, CHEN T, et al. Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode[J]. Journal of Alloys and Compounds, 2021, 870: 159403. |
29 | MA L T, CHEN S M, LONG C B, et al. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction[J]. Advanced Energy Materials, 2019, 9(45): 1902446. |
30 | ZHANG L Y, CHEN L, ZHOU X F, et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system[J]. Advanced Energy Materials, 2015, 5(2): 1400930. |
31 | TRÓCOLI R, LA MANTIA F. An aqueous zinc-ion battery based on copper hexacyanoferrate[J]. ChemSusChem, 2015, 8(3): 481-485. |
32 | ZHAO Y L, ZHU Y H, ZHANG X B. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries[J]. InfoMat, 2020, 2(2): 237-260. |
33 | WU Y, FEE J, TOBIN Z, et al. Amorphous manganese oxides: An approach for reversible aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(2): 1627-1633. |
34 | JURAN T R, YOUNG J, SMEU M. Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(16): 8788-8795. |
35 | CHENG F, CHEN J, GOU X , et al. High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder[J]. Advanced Materials, 2005, 17(22): 2753-2756. |
36 | LIU S D, KANG L, KIM J M, et al. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(25): 2000477. |
37 | WAN F, NIU Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(46): 16358-16367. |
38 | XUE T, FAN H J. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story[J]. Journal of Energy Chemistry, 2021, 54: 194-201. |
39 | CHEN L L, YANG Z H, CUI F, et al. Ultrathin MnO2 nanoflakes grown on N-doped hollow carbon spheres for high-performance aqueous zinc ion batteries[J]. Materials Chemistry Frontiers, 2020, 4(1): 213-221. |
40 | SONG Q Y, ZHOU S H, WANG S Y, et al. Insights into the oxygen vacancies in transition metal oxides for aqueous Zinc-Ion batteries[J]. Chemical Engineering Journal, 2023, 461: 142033. |
143 | YUAN Z Y, XIAO F Y, FANG Y X, et al. Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range[J]. Journal of Power Sources, 2023, 559: 232688. |
144 | CAI K X, LUO S H, QIAN L X, et al. Three-dimensional porous composite Mn2O3@PPy as cathode material for zinc ion battery with high energy density[J]. Journal of Power Sources, 2023, 564: 232854. |
145 | LI W J, HAN C, GU Q F, et al. Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(48): 2001852. |
146 | HUANG A X, ZHOU W J, WANG A R, et al. Self-initiated coating of polypyrrole on MnO2/Mn2O3 nanocomposite for high-performance aqueous zinc-ion batteries[J]. Applied Surface Science, 2021, 545: 149041. |
147 | LIU S C, ZHU H, ZHANG B H, et al. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance[J]. Advanced Materials, 2020, 32(26): 2001113. |
148 | FENG Z Y, SUN J J, LIU Y Y, et al. Polypyrrole-intercalation tuning lamellar structure of V2O5·nH2O boosts fast zinc-ion kinetics for aqueous zinc-ion battery[J]. Journal of Power Sources, 2022, 536: 231489. |
149 | WANG W J, HE D X, FANG Y, et al. Pillaring of a conductive polymer in layered V2O5 boosting ultra-fast Zn2+/H+ storage in aqueous media[J]. Electrochimica Acta, 2022, 416: 140270. |
150 | KIM J, LEE S H, PARK C, et al. Controlling vanadate nanofiber interlayer via intercalation with conducting polymers: Cathode material design for rechargeable aqueous zinc ion batteries[J]. Advanced Functional Materials, 2021, 31(26): 2100005. |
151 | LI S L, WEI X J, WU C H, et al. Constructing three-dimensional structured V2O5/conductive polymer composite with fast ion/electron transfer kinetics for aqueous zinc-ion battery[J]. ACS Applied Energy Materials, 2021, 4(4): 4208-4216. |
152 | DU Y H, WANG X Y, SUN J C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries[J]. Nano Research, 2021, 14(3): 754-761. |
153 | BIN D, HUO W C, YUAN Y B, et al. Organic-inorganic-induced polymer intercalation into layered composites for aqueous zinc-ion battery[J]. Chem, 2020, 6(4): 968-984. |
154 | XU D M, WANG H W, LI F Y, et al. Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode[J]. Advanced Materials Interfaces, 2019, 6(2): 1801506. |
41 | CHEN X Y, WANG L B, LI H, et al. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2019, 38: 20-25. |
42 | WANG X, LI Y G, WANG S, et al. 2D amorphous V2O5/graphene heterostructures for high-safety aqueous Zn-ion batteries with unprecedented capacity and ultrahigh rate capability[J]. Advanced Energy Materials, 2020, 10(22): 2000081. |
43 | DENG S Z, TIE Z W, YUE F, et al. Rational design of ZnMn2 O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries[J]. Angewandte Chemie (International Ed in English), 2022, 61(12): e202115877. |
44 | WANG B, DAI S M, ZHU Z H, et al. A two-dimensional conductive polymer/V2O5 composite with rapid zinc-ion storage kinetics for high-power aqueous zinc-ion batteries[J]. Nanoscale, 2022, 14(33): 12013-12021. |
45 | VENKATKARTHICK R, RODTHONGKUM N, ZHANG X Y, et al. Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries[J]. ACS Applied Energy Materials, 2020, 3(5): 4677-4689. |
46 | ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901. |
47 | PAN Z H, YANG J, YANG J, et al. Stitching of Zn3(OH)2V2O7·2H2O 2D nanosheets by 1D carbon nanotubes boosts ultrahigh rate for wearable quasi-solid-state zinc-ion batteries[J]. ACS Nano, 2020, 14(1): 842-853. |
48 | JIA X X, LIU C F, NEALE Z G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866. |
49 | CHEN X D, ZHANG H, LIU J H, et al. Vanadium-based cathodes for aqueous zinc-ion batteries: Mechanism, design strategies and challenges[J]. Energy Storage Materials, 2022, 50: 21-46. |
50 | ZHU Q N, WANG Z Y, WANG J W, et al. Challenges and strategies for ultrafast aqueous zinc-ion batteries[J]. Rare Metals, 2021, 40(2): 309-328. |
51 | ZHOU T, ZHU L M, XIE L L, et al. Cathode materials for aqueous zinc-ion batteries: A mini review[J]. Journal of Colloid and Interface Science, 2022, 605: 828-850. |
52 | ZHOU Y Z, CHEN F D, ARANDIYAN H, et al. Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges[J]. Journal of Energy Chemistry, 2021, 57: 516-542. |
155 | BI W C, GAO G, WU G M, et al. Sodium vanadate/PEDOT nanocables rich with oxygen vacancies for high energy conversion efficiency zinc ion batteries[J]. Energy Storage Materials, 2021, 40: 209-218. |
156 | ZHANG Y, HUANG R X, WANG X Y, et al. Facile large-scale preparation of vanadium pentoxide-polypyrrole composite for aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 907: 164434. |
157 | XU J W, GAO Q L, XIA Y M, et al. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole[J]. Journal of Colloid and Interface Science, 2021, 598: 419-429. |
158 | LIAO X B, PAN C L, PAN Y S, et al. Synthesis of three-dimensional β-MnO2/PPy composite for high-performance cathode in zinc-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: 161619. |
159 | LI Z X, HUANG Y, ZHANG J Y, et al. One-step synthesis of MnOx/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism[J]. Nanoscale, 2020, 12(6): 4150-4158. |
160 | XUE Q, LI L, HUANG Y X, et al. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22339-22345. |
161 | RUAN P C, XU X L, GAO X L, et al. Achieving long-cycle-life Zn-ion batteries through interfacial engineering of MnO2-polyaniline hybrid networks[J]. Sustainable Materials and Technologies, 2021, 28: e00254. |
162 | ZHANG Y, DU Y H, SONG B X, et al. Manganese-ions and polyaniline co-intercalation into vanadium oxide for stable zinc-ion batteries[J]. Journal of Power Sources, 2022, 545: 231920. |
163 | YAN X T, FENG X C, HAO B Y, et al. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries[J]. Journal of Colloid and Interface Science, 2022, 628(Pt B): 204-213. |
164 | HAN Y, WU Q, LI S Q, et al. Consecutive core-shell SP@PDA-d-δ-MnO2 cathode material for aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2023, 938: 168555. |
165 | ZHANG M Y, ZHANG X Q, DONG Q, et al. Organic molecular intercalated V3O7·H2O with high operating voltage for long cycle life aqueous Zn-ion batteries[J]. Advanced Functional Materials, 2023, 33(31): 2213187. |
166 | WANG W J, LIU D X, JIANG Y Q, et al. Mechanism enhancement of V3O7/V6O13 heterostructures to achieve high-performance aqueous Zn-Ion batteries[J]. Chemical Engineering Journal, 2023, 463: 142309. |
53 | SELVAKUMARAN D, PAN A Q, LIANG S Q, et al. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(31): 18209-18236. |
54 | MING F W, LIANG H F, LEI Y J, et al. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2602-2609. |
55 | JING F Y, PEI J, ZHOU Y M, et al. High-performance reversible aqueous Zinc-Ion battery based on Zn2+ pre-intercalation alpha-manganese dioxide nanowires/carbon nanotubes[J]. Journal of Colloid and Interface Science, 2022, 609: 557-565. |
56 | VOLKOV F S, ELISEEVA S N, KAMENSKII M A, et al. Vanadium oxide-poly(3, 4-ethylenedioxythiophene) nanocomposite as high-performance cathode for aqueous Zn-ion batteries: The structural and electrochemical characterization[J]. Nanomaterials, 2022, 12(21): 3896. |
57 | LI K, LIANG M Y, WANG H, et al. 3D MXene architectures for efficient energy storage and conversion[J]. Advanced Functional Materials, 2020, 30(47): 2000842. |
58 | LIM J, KASIRI G, SAHU R, et al. Irreversible structural changes of copper hexacyanoferrate used as a cathode in Zn-ion batteries[J]. Chemistry, 2020, 26(22): 4917-4922. |
59 | KUNDU D, ADAMS B D, DUFFORT V, et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode[J]. Nature Energy, 2016, 1(10): 16119. |
60 | ZHANG M W, LIANG R L, OR T, et al. Recent progress on high-performance cathode materials for zinc-ion batteries[J]. Small Structures, 2021, 2(2): 2000064. |
61 | LIU N, LI B, HE Z X, et al. Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries[J]. Journal of Energy Chemistry, 2021, 59: 134-159. |
62 | LI G J, SUN L, ZHANG S L, et al. Developing cathode materials for aqueous zinc ion batteries: Challenges and practical prospects[J]. Advanced Functional Materials, 2024, 34(5): 2301291. |
63 | ZUO S Y, XU X J, JI S M, et al. Cathodes for aqueous Zn-ion batteries: Materials, mechanisms, and kinetics[J]. Chemistry, 2021, 27(3): 830-860. |
64 | WANG M S, ZHANG J, ZHANG L Z, et al. Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs)[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31564-31574. |
167 | ZENG Y X, WANG Y, JIN Q, et al. Rationally designed Mn2O3-ZnMn2O4 hollow heterostructures from metal-organic frameworks for stable Zn-ion storage[J]. Angewandte Chemie (International Ed in English), 2021, 60(49): 25793-25798. |
168 | WANG M L, NIE K Q, WU H B, et al. Carbon nanotubes intertwined porous vanadium oxide heterostructured microfibers as high-performance cathodes for aqueous zinc-ion batteries[J]. Applied Surface Science, 2023, 612: 155791. |
169 | TONG Y, ZHAO Y, LUO M, et al. MOF-derived heterostructured C@VO2@V2O5 for stable aqueous zinc-ion batteries cathode[J]. Journal of Alloys and Compounds, 2023, 932: 167681. |
170 | QIN M L, LIU W M, SHAN L T, et al. Construction of V2O5/NaV6O15 biphase composites as aqueous zinc-ion battery cathode[J]. Journal of Electroanalytical Chemistry, 2019, 847: 113246. |
171 | FAN L L, LI Z H, KANG W M, et al. Highly stable aqueous rechargeable Zn-ion battery: The synergistic effect between NaV6O15 and V2O5 in skin-core heterostructured nanowires cathode[J]. Journal of Energy Chemistry, 2021, 55: 25-33. |
172 | ZHANG L, HOU L H, SHENG R, et al. Constructing an Al2O3/(NH4)2V4O9 heterostructure as a cathode material for high performance aqueous rechargeable zinc ion batteries[J]. CrystEngComm, 2022, 24(47): 8248-8255. |
173 | DENG W N, XU Y X, ZHANG X C, et al. (NH4)2Co2V10O28·16H2O/(NH4)2V10O25·8H2O heterostructure as cathode for high-performance aqueous Zn-ion batteries[J]. Journal of Alloys and Compounds, 2022, 903: 163824. |
174 | SUN R, GUO X C, DONG S Y, et al. Zn3V3O8@ZnO@NC heterostructure for stable zinc ion storage from assembling nanodisks into cross-stacked architecture[J]. Journal of Power Sources, 2023, 567: 232946. |
175 | YANG S N, ZHANG M S, WU X W, et al. The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 832: 69-74. |
176 | JIA H F, LI Y X, ALI U, et al. In-situ formation of ultrafine ZnMn2O4-MnOOH composite nanoparticles embedded into porous carbon nanospheres for stable aqueous zinc-ion batteries[J]. Applied Surface Science, 2022, 592: 153279. |
177 | WANG K N, QIN M R, WANG C T, et al. CeO2/MnOx@C hollow cathode derived from self-assembly of Ce-Mn-MOFs for high-performance aqueous zinc-ion batteries[J]. Journal of Colloid and Interface Science, 2023, 629: 733-743. |
178 | WANG S, MA W B, SANG Z Y, et al. Dual-modification of manganese oxide by heterostructure and cation pre-intercalation for high-rate and stable zinc-ion storage[J]. Journal of Energy Chemistry, 2022, 67: 82-91. |
65 | LUO H, WANG B, WANG F, et al. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage[J]. ACS Nano, 2020, 14(6): 7328-7337. |
66 | ZHOU W J, CHEN J Z, HE C L, et al. Hybridizing δ-type NaxV2O5·nH2O with graphene towards high-performance aqueous zinc-ion batteries[J]. Electrochimica Acta, 2019, 321: 134689. |
67 | ZHOU T, HAN Q, XIE L L, et al. Recent developments and challenges of vanadium oxides (VxOy) cathodes for aqueous zinc-ion batteries[J]. The Chemical Record, 2022, 22(4): e202100275. |
68 | ZHONG W, ZHANG J H, LI Z M, et al. Issues and strategies of cathode materials for mild aqueous static zinc-ion batteries[J]. Green Chemical Engineering, 2023, 4(3): 264-284. |
69 | CHEN M, ZHANG S C, ZOU Z G, et al. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries[J]. Rare Metals, 2023, 42(9): 2868-2905. |
70 | WANG C Y, WANG M Q, HE Z C, et al. Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity[J]. ACS Applied Energy Materials, 2020, 3(2): 1742-1748. |
71 | ZANG X L, WANG X S, LIU H L, et al. Enhanced ion conduction via epitaxially polymerized two-dimensional conducting polymer for high-performance cathode in zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9347-9354. |
72 | TAN THONG P, SADHASIVAM T, KIM N I, et al. Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film Zn-MnO2 battery[J]. Energy, 2021, 221: 119856. |
73 | 婷婷, 林其杭, 刘长洋, 等. 水系锌离子电池二氧化锰正极改性研究进展[J]. 储能科学与技术, 2023, 12(3): 754-767. |
TING T, LIN Q H, LIU C Y, et al. Research progress in modification of manganese dioxide as cathode materials for aqueous zinc-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(3): 754-767. | |
74 | ZHOU T, XIE L L, HAN Q, et al. Investigation of Na6V10O28 as a promising rechargeable aqueous zinc-ion batteries cathode[J]. Chemical Engineering Journal, 2022, 445: 136789. |
75 | LIU X R, SHEN X X, CHEN T T, et al. The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 904: 164002. |
76 | LAN B X, PENG Z, CHEN L N, et al. Metallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries[J]. Journal of Alloys and Compounds, 2019, 787: 9-16. |
77 | ZHANG Y B, LI Z H, GONG L, et al. Rational construction of Ag@MIL-88B(V)-derived hierarchical porous Ag-V2O5 heterostructures with enhanced diffusion kinetics and cycling stability for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2023, 77: 561-571. |
78 | ZHENG J Q, LIU C F, TIAN M, et al. Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate[J]. Nano Energy, 2020, 70: 104519. |
79 | XIA J J, ZHOU Y R, ZHANG J, et al. Triggering high capacity and superior reversibility of manganese oxides cathode via magnesium modulation for Zn//MnO2 batteries[J]. Small, 2023, 19(37): e2301906. |
80 | XIA C, GUO J, LI P, et al. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode[J]. Angewandte Chemie (International Ed in English), 2018, 57(15): 3943-3948. |
81 | WU F F, WANG Y W, RUAN P C, et al. Fe-doping enabled a stable vanadium oxide cathode with rapid Zn diffusion channel for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 21: 100842. |
82 | RAN Y, REN J, KONG Y L, et al. Electrochemical zinc and hydrogen co-intercalation in Li3(V6O16): A high-capacity aqueous zinc-ion battery cathode[J]. Electrochimica Acta, 2022, 412: 140120. |
83 | TANG B Y, ZHOU J, FANG G Z, et al. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode[J]. Journal of Materials Chemistry A, 2019, 7(3): 940-945. |
84 | LI J W, MCCOLL K, LU X K, et al. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(15): 2000058. |
85 | HE P, ZHANG G B, LIAO X B, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702463. |
86 | WANG L L, HUANG K W, CHEN J T, et al. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes[J]. Science Advances, 2019, 5(10): eaax4279. |
87 | LONG F N, XIANG Y H, YANG S N, et al. Layered manganese dioxide nanoflowers with Cu2+ and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery[J]. Journal of Colloid and Interface Science, 2022, 616: 101-109. |
88 | LI D, WANG Z R, XIA Y M, et al. Copper-doped manganese tetroxide composites with excellent electrochemical performance for aqueous zinc-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 888: 115214. |
89 | FENG Z Y, ZHANG Y F, SUN J J, et al. Dual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries[J]. Chemical Engineering Journal, 2022, 433: 133795. |
179 | WU X T, YIN C S, ZHANG M F, et al. The intercalation cathode of MOFs-driven vanadium-based composite embedded in N-doped carbon for aqueous zinc ion batteries[J]. Chemical Engineering Journal, 2023, 452: 139573. |
180 | XIAO B Q, CHEN J, HU C F, et al. 2D dynamic heterogeneous interface coupling endowing extra Zn2+ storage[J]. Advanced Functional Materials, 2023, 33(9): 2211679. |
181 | GUO J D, LIU J X, MA W B, et al. Vanadium oxide intercalated with conductive metal-organic frameworks with dual energy-storage mechanism for high capacity and high-rate capability Zn ion storage[J]. Advanced Functional Materials, 2023, 33(41): 2302659. |
90 | LV T T, ZHU G Y, DONG S Y, et al. Co-intercalation of dual charge carriers in metal-ion-confining layered vanadium oxide nanobelts for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(5): 2216089. |
91 | WANG K N, WANG J W, CHEN P M, et al. Structural transformation by crystal engineering endows aqueous zinc-ion batteries with ultra-long cyclability[J]. Small, 2023, 19(29): e2300585. |
92 | HE H, PAN F C, LIANG X W, et al. Unveiling the effect of structural water on Zn-ion storage of polyoxovanadate for high-rate and long-life aqueous zinc ion battery[J]. Chemical Engineering Journal, 2023, 462: 142221. |
93 | XIE Z W, LIU S F, WU C H, et al. Homo-interface and gradient N-doping cooperation to boost the rate capability of porous NaV8O20·nH2O nanoflake cathode in Zn-ion batteries[J]. Energy Storage Materials, 2023, 60: 102823. |
94 | HE W D, MENG C, AI Z Z, et al. Achieving fast ion diffusion in aqueous zinc-ion batteries by cathode reconstruction design[J]. Chemical Engineering Journal, 2023, 454: 140260. |
[1] | 缪胤宝, 张文华, 刘伟昊, 王帅, 陈哲, 彭望, 曾杰. 富锂正极材料Li1.2Ni0.13Co0.13Mn0.54O2 的制备及性能[J]. 储能科学与技术, 2024, 13(5): 1427-1434. |
[2] | 朱璟, 郝峻丰, 孙蔷馥, 张新新, 申晓宇, 岑官骏, 乔荣涵, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2024.2.1—2024.3.31)[J]. 储能科学与技术, 2024, 13(5): 1398-1416. |
[3] | 孙蔷馥, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 张新新, 田孟羽, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.12.1—2024.1.31)[J]. 储能科学与技术, 2024, 13(3): 725-741. |
[4] | 彭可, 张志成, 胡有章, 张旭辉, 周稼辉, 李彬. 基于有限元的热力耦合场匣钵运动分析与优化[J]. 储能科学与技术, 2024, 13(2): 634-642. |
[5] | 郭秀丽, 周小龙, 邹才能, 唐永炳. 水系双离子电池的研究进展与展望[J]. 储能科学与技术, 2024, 13(2): 462-479. |
[6] | 李顺, 黄建国, 何桂金. 木质素基碳/硫纳米球复合材料作为高性能锂硫电池正极材料[J]. 储能科学与技术, 2024, 13(1): 270-278. |
[7] | 杜文, 王君雷, 徐运飞, 李世龙, 王昆. 火焰喷雾热解法生产锂离子电池高镍三元正极材料的技术经济分析[J]. 储能科学与技术, 2024, 13(1): 345-357. |
[8] | 王盼晴, 黄彦杰, 何一芃, 陈祁恒, 尹提, 陈伟豪, 谭磊, 宁天翔, 邹康宇, 李灵均. 高镍正极材料表面锂残渣的研究进展[J]. 储能科学与技术, 2024, 13(1): 92-112. |
[9] | 陈淑媛, 程晨, 夏啸, 鞠焕鑫, 张亮. 高比能二次电池正极材料的X射线谱学研究进展[J]. 储能科学与技术, 2024, 13(1): 113-129. |
[10] | 张新新, 申晓宇, 岑官骏, 乔荣涵, 朱璟, 郝峻丰, 孙蔷馥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.10.1—2023.11.30)[J]. 储能科学与技术, 2024, 13(1): 252-269. |
[11] | 詹世英, 李欢欢, 胡方. 水系锌离子电容器正极材料的研究进展[J]. 储能科学与技术, 2023, 12(9): 2799-2810. |
[12] | 岑官骏, 乔荣涵, 申晓宇, 朱璟, 郝峻丰, 孙蔷馥, 张新新, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.6.1—2023.7.31)[J]. 储能科学与技术, 2023, 12(9): 3003-3018. |
[13] | 张吉禄, 董育辰, 宋强, 袁思鸣, 郭孝东. 多晶及单晶高镍三元材料LiNi0.9Co0.05Mn0.05O2 的可控制备及其电化学储锂特性[J]. 储能科学与技术, 2023, 12(8): 2382-2389. |
[14] | 张梓楠, 陈剑. Nb掺杂Na3V2O2 (PO4 ) 2F空心微球钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2023, 12(8): 2370-2381. |
[15] | 乔荣涵, 朱璟, 申晓宇, 岑官骏, 郝峻丰, 季洪祥, 田孟羽, 金周, 詹元杰, 武怿达, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2023.4.1—2023.5.31)[J]. 储能科学与技术, 2023, 12(7): 2333-2348. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||