1 |
LV X S, WEI W, SUN Q L, et al. A first-principles study of NbSe2 monolayer as anode materials for rechargeable lithium-ion and sodium-ion batteries[J]. Journal of Physics D: Applied Physics, 2017, 50(23): 235501. DOI:10.1088/1361-6463/aa6eca.
|
2 |
LI M, LU J, CHEN Z W, et al. 30 years of lithium-ion batteries[J]. Advanced Materials, 2018: e1800561. DOI:10.1002/adma. 2018 00561.
|
3 |
WANG N N, BAI Z C, QIAN Y T, et al. Double-walled Sb@TiO2– x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries[J]. Advanced Materials, 2016, 28(21): 4126-4133. DOI:10.1002/adma.201505918.
|
4 |
NAYAK P K, YANG L T, BREHM W, et al. From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises[J]. Angewandte Chemie (International Ed), 2018, 57(1): 102-120. DOI:10.1002/anie.201703772.
|
5 |
KUNDU D P, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie (International Ed), 2015, 54(11): 3431-3448. DOI:10.1002/anie.201410376.
|
6 |
LIANG J L, WEI C B, HUO D X, et al. Research progress on modification and application of two-dimensional anode materials for sodium ion batteries[J]. Journal of Energy Storage, 2024, 85: 111044. DOI:10.1016/j.est.2024.111044.
|
7 |
姚远, 宗若奇, 盖建丽. 钠离子电池锑基及铋基金属负极材料研究进展[J]. 储能科学与技术, 2024, 13(8): 2649-2664. DOI: 10.19799/j.cnki.2095-4239.2024.0180.
|
|
YAO Y, ZONG R Q, GAI J L. Research progress of antimony-and bismuth-based metallic anode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(8): 2649-2664. DOI: 10.19799/j.cnki.2095-4239.2024.0180.
|
8 |
ER D Q, LI J W, NAGUIB M, et al. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(14): 11173-11179. DOI:10.1021/am501144q.
|
9 |
WANG D S, GAO Y, LIU Y H, et al. Investigation of chloride ion adsorption onto Ti2C MXene monolayers by first-principles calculations[J]. Journal of Materials Chemistry A, 2017, 5(47): 24720-24727. DOI:10.1039/C7TA09057A.
|
10 |
FAN K, YING Y R, LI X Y, et al. Theoretical investigation of V3C2 MXene as prospective high-capacity anode material for metal-ion (Li, Na, K, and Ca) batteries[J]. The Journal of Physical Chemistry C, 2019, 123(30): 18207-18214. DOI:10.1021/acs.jpcc. 9b03963.
|
11 |
SUN Q L, DAI Y, MA Y D, et al. Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries[J]. Journal of Physical Chemistry Letters, 2016, 7(6): 937-943. DOI:10.1021/acs.jpclett.6b00171.
|
12 |
WU Y T, NIE P, WANG J, et al. Few-layer MXenes delaminated via high-energy mechanical milling for enhanced sodium-ion batteries performance[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39610-39617. DOI:10.1021/acsami.7b12155.
|
13 |
KAJIYAMA S, SZABOVA L, SODEYAMA K, et al. Sodium-ion intercalation mechanism in MXene nanosheets[J]. ACS Nano, 2016, 10(3): 3334-3341. DOI:10.1021/acsnano.5b06958.
|
14 |
SUN D D, WANG M S, LI Z Y, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications, 2014, 47: 80-83. DOI:10.1016/j.elecom. 2014. 07.026.
|
15 |
YANG E, JI H, KIM J, et al. Exploring the possibilities of two-dimensional transition metal carbides as anode materials for sodium batteries[J]. Physical Chemistry Chemical Physics, 2015, 17(7): 5000-5005. DOI:10.1039/C4CP05140H.
|
16 |
ZHAO T S, ZHANG S H, GUO Y G, et al. TiC2: A new two-dimensional sheet beyond MXenes[J]. Nanoscale, 2016, 8(1): 233-242. DOI:10.1039/c5nr04472c.
|
17 |
XU J, WANG D S, LIAN R Q, et al. Structural prediction and multilayer Li+ storage in two-dimensional VC2 carbide studied by first-principles calculations[J]. Journal of Materials Chemistry A, 2019, 7(15): 8873-8881. DOI:10.1039/c9ta01476d.
|
18 |
ZHANG F, JING T, CAI S H, et al. Two-dimensional ZrC2 as a novel anode material with high capacity for sodium ion battery[J]. Physical Chemistry Chemical Physics, 2021, 23(22): 12731-12738. DOI:10.1039/d1cp00050k.
|
19 |
GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials[J]. Journal of Physics Condensed Matter, 2009, 21(39): 395502. DOI:10.1088/0953-8984/21/39/395502.
|
20 |
PERDEW J P, BURKE K, WANG Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Review B, 1996, 54(23): 16533-16539. DOI:10.1103/physrevb.54.16533.
|
21 |
DUA H, DEB J, PAUL D, et al. Twin-graphene as a promising anode material for Na-ion rechargeable batteries[J]. ACS Applied Nano Materials, 2021, 4(5): 4912-4918. DOI:10.1021/acsanm. 1c00460.
|
22 |
MORTAZAVI M, WANG C, DENG J K, et al. Ab initio characterization of layered MoS2 as anode for sodium-ion batteries[J]. Journal of Power Sources, 2014, 268: 279-286. DOI:10.1016/j.jpowsour.2014.06.049.
|
23 |
MAJID A, HUSSAIN K, KHAN S U, et al. First principles study of SiC as the anode in sodium ion batteries[J]. New Journal of Chemistry, 2020, 44(21): 8910-8921. DOI:10.1039/D0NJ01311K.
|
24 |
JIANG H R, SHYY W, LIU M, et al. Boron phosphide monolayer as a potential anode material for alkali metal-based batteries[J]. Journal of Materials Chemistry A, 2017, 5(2): 672-679. DOI:10.1039/C6TA09264K.
|
25 |
SHUKLA V, JENA N K, NAQVI S R, et al. Modelling high-performing batteries with mxenes: The case of S-functionalized two-dimensional nitride mxene electrode[J]. Nano Energy, 2019, 58: 877-885. DOI:10.1016/j.nanoen.2019.02.007.
|
26 |
RAJPUT K, KUMAR V, THOMAS S, et al. Ca2C MXene monolayer as a superior anode for metal-ion batteries[J]. 2D Materials, 2021, 8(3): 035015. DOI:10.1088/2053-1583/abf233.
|
27 |
WANG Y N, LI Y S. Ab initio prediction of two-dimensional Si3C enabling high specific capacity as an anode material for Li/Na/K-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(8): 4274-4282. DOI:10.1039/c9ta11589g.
|
28 |
KHOSSOSSI N, BANERJEE A, ESSAOUDI I, et al. Thermody namics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries[J]. Journal of Power Sources, 2021, 485: 229318. DOI:10.1016/j.jpowsour. 2020. 229318.
|
29 |
YADAV N, CHAKRABORTY B, DHILIP KUMAR T J. First-principles design and investigation of siligraphene as a potential anode material for Na-ion batteries[J]. The Journal of Physical Chemistry C, 2020, 124(21): 11293-11300. DOI:10.1021/acs.jpcc.0c00847.
|
30 |
LING F L, LIU X Q, LI L, et al. Novel CuTe monolayer as promising anode material for Na-ion batteries: A theoretical study[J]. Applied Surface Science, 2022, 573: 151550. DOI:10.1016/j.apsusc.2021.151550.
|
31 |
陈思钰, 叶小娟, 刘春生. 二维锗醚在钠离子电池方面的理论研究[J]. 物理学报, 2022, 71(22): 352-360. DOI: 10.7498/aps. 71. 20220572.
|
|
CHEN S Y, YE X J, LIU C S. Theoretical research of two-dimensional germanether in sodium-ion battery[J]. Acta Physica Sinica, 2022, 71(22): 352-360. DOI: 10.7498/aps.71.20220572.
|
32 |
王文春, 马天赐, 刘春生. 二维半导体R57-BN作为钠离子电池阳极材料的理论研究[J]. 高等学校化学学报, 2024, 45(6): 93-100.
|
|
WANG W C, MA T C, LIU C S. Theoretical research of two-dimensional semiconductor R57-BN as anode material of sodium-ion battery[J]. Chemical Journal of Chinese Universities, 2024, 45(6): 93-100.
|
33 |
曹美兰, 侯晓川, 周玉, 等. 钠离子电池用层状氧化物空气稳定性研究进展[J]. 电池, 2024, 54(1): 116-120. DOI: 10.19535/j.1001-1579.2024.01.026.
|
|
CAO M L, HOU X C, ZHOU Y, et al. Research progress in air stability of layered oxide for sodium-ion battery[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 116-120. DOI: 10.19535/j.1001-1579.2024.01.026.
|