储能科学与技术 ›› 2025, Vol. 14 ›› Issue (2): 497-504.doi: 10.19799/j.cnki.2095-4239.2024.0734

• 储能材料与器件 • 上一篇    下一篇

二维VC2作为钠离子电池负极材料的理论研究

潘美玲(), 孙楠楠(), 赵志超   

  1. 河北水利电力学院,河北 沧州 061000
  • 收稿日期:2024-08-05 修回日期:2024-09-13 出版日期:2025-02-28 发布日期:2025-03-18
  • 通讯作者: 孙楠楠 E-mail:panmeiling@hbwe.edu.cn;sunnannan@hbwe.edu.cn
  • 作者简介:潘美玲(1987—),女,硕士,讲师,研究方向为材料物理与化学,E-mail:panmeiling@hbwe.edu.cn
  • 基金资助:
    河北水利电力学院基本科研业务费专项资金资助(SYKY2221);河北省自然科学基金(B2021412001)

Theoretical study of two-dimensional VC2 as an anode material for sodium-ion batteries

Meiling PAN(), Nannan SUN(), Zhichao ZHAO   

  1. Hebei University of Water Resources and Electric Engineering, Cangzhou 061000, Hebei, China
  • Received:2024-08-05 Revised:2024-09-13 Online:2025-02-28 Published:2025-03-18
  • Contact: Nannan SUN E-mail:panmeiling@hbwe.edu.cn;sunnannan@hbwe.edu.cn

摘要:

钠离子电池的发展离不开高性能负极材料的合理设计,具有C2二聚体的二维过渡金属碳化物因其高碳原子质量暴露在表面,表现出比其他二维过渡金属碳化物更加优异的电极材料性能。本工作选择具有较高结构稳定性的C2二聚体VC2单分子层为目标材料,利用第一性原理对其结构电子性质和钠离子在该结构表面的存储性能进行研究。存储性能的计算包括钠离子在VC2表面的吸附位点、多层吸附行为、扩散路径以及开路电压等关键参数。结果表明,VC2单分子层结构稳定性高、导电性良好,具备优异的钠离子存储性能,基于多层钠离子吸附,其对Na的理论容量为715 mAh/g,扩散能垒是0.23 eV,保证了较快的充放电速率。随着钠离子浓度的增加,平均总吸附能始终为负。此外,开路电压的计算表明,Na插层电压的变化是稳定的,以上结果均表明VC2单分子层有望成为钠离子电池的理想负极材料。本研究有助于为寻找高性能钠离子电池负极材料提供新的思路,为进一步优化和设计此类材料提供理论依据。

关键词: 钠离子电池, 第一性原理, 二维材料

Abstract:

The rational design of high-performance anode materials is crucial for advancing sodium-ion battery technology. Among potential candidates, two-dimensional transition metal carbides, particularly those incorporating C2 dimer structures, exhibit superior electrode material properties owing tothe high carbon atomic mass on their surfaces. Consequently, we selected the VC2 monolayer, featuring a highly stable a C2 dimer structure, for investigation.Utilizing first-principles calculations, we evaluated its structural and electronic properties, as well as its sodium-ion storage performance on the surface, includingadsorption sites, multilayer adsorption dynamics, diffusion pathways, and open-circuit voltage. Our findings reveal that the VC2 monolayer exhibits exceptional structural stability and electrical conductivity, strongly suggesting its suitability for sodium-ion storage applications. Theoretical calculations predict a substantial sodium-ion adsorption capacity for multi-layer VC2, reaching 715 mAh/g. Furthermore, the calculated low-diffusion energy barrier of 0.23 eV ensures swift charging and discharging rates. Notably, as the sodium-ion concentration escalates, the average total adsorption energy remains consistently negative. Furthermore, open-circuit voltage calculations underscore the stability of sodium intercalation voltage. Collectively, these results underscore the potential of VC2 monolayers as an ideal anode material for sodium-ion batteries. This study not only introduces a novel perspective for the pursuit of high-performance anode materials but also lays a theoretical foundation for the subsequent optimization and design of such materials.

Key words: sodium ion battery, first principles calculations, two-dimensional materials

中图分类号: