1 |
HE Y, BAI W Y, WANG L L, et al. SOH estimation for lithium-ion batteries: An improved GPR optimization method based on the developed feature extraction[J]. Journal of Energy Storage, 2024, 83: 110678. DOI: 10.1016/j.est.2024.110678.
|
2 |
朱振威, 苗嘉伟, 祝夏雨, 等. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149. DOI: 10.19799/j.cnki.2095-4239.2024.0713.
|
|
ZHU Z W, MIAO J W, ZHU X Y, et al. Research progress in lithium-ion battery remaining useful life prediction based on machine learning[J]. Energy Storage Science and Technology, 2024, 13(9): 3134-3149. DOI: 10.19799/j.cnki.2095-4239.2024.0713.
|
3 |
李英顺, 阚宏达, 郭占男, 等. 基于数据预处理和VMD-LSTM-GPR的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210.
|
|
LI Y S, KAN H D, GUO Z N, et al. Prediction of remaining useful life of lithium-ion battery based on data preprocessing and VMD-LSTM-GPR[J]. Transactions of China Electrotechnical Society, 2024, 39(10): 3244-3258. DOI: 10.19595/j.cnki.1000-6753.tces.230210.
|
4 |
陈峥, 陈洋, 申江卫, 等. 基于优化支持向量回归算法的锂离子电池可用容量估计[J]. 储能科学与技术, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239.2023.0387.
|
|
CHEN Z, CHEN Y, SHEN J W, et al. Available capacity estimation of lithium-ion batteriesbased on the optimized support vector regression algorithm[J]. Energy Storage Science and Technology, 2023, 12(10): 3203-3213. DOI: 10.19799/j.cnki.2095-4239. 2023.0387.
|
5 |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346.
|
6 |
申江卫, 高承志, 舒星, 等. 基于迁移模型的锂离子电池宽温度全寿命SOC与可用容量联合估计[J]. 电工技术学报, 2023, 38(11): 3052-3063. DOI: 10.19595/j.cnki.1000-6753.tces.220216.
|
|
SHEN J W, GAO C Z, SHU X, et al. Joint estimation of SOC and usable capacity of lithium-ion battery with wide temperature and full life based on migration model[J]. Transactions of China Electrotechnical Society, 2023, 38(11): 3052-3063. DOI: 10. 19595/j.cnki.1000-6753.tces.220216.
|
7 |
XIONG W, MO Y M, YAN C. Online state-of-health estimation for second-use lithium-ion batteries based on weighted least squares support vector machine[J]. IEEE Access, 2020, 9: 1870-1881. DOI: 10.1109/ACCESS.2020.3026552.
|
8 |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166.
|
|
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939. DOI: 10.19799/j.cnki.2095-4239.2020.0166.
|
9 |
顾菊平, 蒋凌, 张新松, 等. 基于特征提取的锂离子电池健康状态评估及影响因素分析[J]. 电工技术学报, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
|
GU J P, JIANG L, ZHANG X S, et al. Estimation and influencing factor analysis of lithium-ion batteries state of health based on features extraction[J]. Transactions of China Electrotechnical Society, 2023, 38(19): 5330-5342. DOI: 10.19595/j.cnki.1000-6753.tces.231085.
|
10 |
XIONG R, LI Z Y, YANG R X, et al. Fast self-heating battery with anti-aging awareness for freezing climates application[J]. Applied Energy, 2022, 324: 119762. DOI: 10.1016/j.apenergy.2022.119762.
|
11 |
ZHAO Y, WANG Z P, SHEN Z M, et al. Assessment of battery utilization and energy consumption in the large-scale development of urban electric vehicles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(17): e2017318118. DOI: 10.1073/pnas.2017318118.
|
12 |
DENG Z W, HU X S, XIE Y, et al. Battery health evaluation using a short random segment of constant current charging[J]. iScience, 2022, 25(5): 104260. DOI: 10.1016/j.isci.2022.104260.
|
13 |
ZHANG C H, KANG Y Z, DUAN B, et al. An adaptive battery capacity estimation method suitable for random charging voltage range in electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2022, 69(9): 9121-9132. DOI: 10.1109/TIE.2021.3111585.
|
14 |
DENG Z W, LIN X K, CAI J W, et al. Battery health estimation with degradation pattern recognition and transfer learning[J]. Journal of Power Sources, 2022, 525: 231027. DOI: 10.1016/j.jpowsour.2022.231027.
|
15 |
LIU K L, TANG X P, TEODORESCU R, et al. Future ageing trajectory prediction for lithium-ion battery considering the knee point effect[J]. IEEE Transactions on Energy Conversion, 2022, 37(2): 1282-1291. DOI: 10.1109/TEC.2021.3130600.
|
16 |
WEN S, LIN N, HUANG S X, et al. Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model[J]. Energy, 2023, 284: 129246. DOI: 10.1016/j.energy.2023.129246.
|
17 |
RUMPF K, NAUMANN M, JOSSEN A. Experimental investigation of parametric cell-to-cell variation and correlation based on 1100 commercial lithium-ion cells[J]. Journal of Energy Storage, 2017, 14: 224-243. DOI: 10.1016/j.est.2017.09.010.
|
18 |
林点, 潘理, 易平. 面向图像识别的卷积神经网络鲁棒性研究进展[J]. 网络与信息安全学报, 2022, 8(3): 111-122. DOI: 10.11959/j.issn.2096-109x.2022037.
|
|
LIN D, PAN L, YI P. Research on the robustness of convolutional neural networks in image recognition[J]. Chinese Journal of Network and Information Security, 2022, 8(3): 111-122. DOI: 10.11959/j.issn.2096-109x.2022037.
|
19 |
ZHOU Z Y, LIU Y G, YOU M X, et al. Two-stage aging trajectory prediction of LFP lithium-ion battery based on transfer learning with the cycle life prediction[J]. Green Energy and Intelligent Transportation, 2022, 1(1): 100008. DOI: 10.1016/j.geits.2022.100008.
|
20 |
CHOI Y, RYU S, PARK K, et al. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles[J]. IEEE Access, 2019, 7: 75143-75152. DOI: 10.1109/ACCESS.2019.2920932.
|
21 |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// International Conference on Machine Learning, 2015: 448-456.
|
22 |
WANG Y Y, LI Y B, SONG Y, et al. The influence of the activation function in a convolution neural network model of facial expression recognition[J]. Applied Sciences, 2020, 10(5): 1897. DOI: 10.3390/app10051897.
|
23 |
DUAN Y Z, TIAN J P, LU J H, et al. Deep neural network battery impedance spectra prediction by only using constant-current curve[J]. Energy Storage Materials, 2021, 41: 24-31. DOI: 10.1016/j.ensm.2021.05.047.
|
24 |
KINGMA D P, BA J, HAMMAD M M. Adam: A method for stochastic optimization[EB/OL]. https://arxiv.org/abs/1412.6980v9.
|
25 |
XUE J K, SHEN B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6.
|
26 |
WANG Q, YE M, WEI M, et al. Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios[J]. Energy, 2023, 263: 125718. DOI: 10.1016/j.energy.2022.125718.
|
27 |
李晓东. Python人工智能[M]. 北京: 电子工业出版社, 2021.
|
|
LI X D. Python artificial intelligence[M]. Beijing: Publishing House of Electronics Industry, 2021.
|
28 |
LI Y H, LI K, LIU X, et al. Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning[J]. Applied Energy, 2021, 285: 116410. DOI: 10.1016/j.apenergy.2020.116410.
|