储能科学与技术 ›› 2025, Vol. 14 ›› Issue (4): 1585-1595.doi: 10.19799/j.cnki.2095-4239.2024.0964

• 储能测试与评价 • 上一篇    下一篇

基于短时随机充电数据和优化卷积神经网络的锂电池健康状态估计

申江卫1,2(), 折亦鑫1, 舒星2, 刘永刚3, 魏福星1, 夏雪磊1, 陈峥1()   

  1. 1.昆明理工大学交通工程学院,云南 昆明 650500
    2.汽车零部件先进制造技术教育部重点实验室(重庆理工大学),重庆 400054
    3.重庆大学机械与运载学院,重庆 400030
  • 收稿日期:2024-10-14 修回日期:2024-11-15 出版日期:2025-04-28 发布日期:2025-05-20
  • 通讯作者: 陈峥 E-mail:shenjiangwei6@kust.edu.cn;chen@kust.edu.cn
  • 作者简介:申江卫(1984—),男,博士,高级实验师,研究方向为新能源汽车动力电池管理,E-mail:shenjiangwei6@kust.edu.cn
  • 基金资助:
    国家自然科学基金(52162051);云南省基础研究计划项目(202301AT070423);昆明理工大学自然科学研究基金项目(KK23202202021);汽车零部件先进制造技术教育部重点实验室开放课题基金(2023KLMT02);重庆市自然科学基金(CSTB2024NSCQ-MSX0389)

State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network

Jiangwei SHEN1,2(), Yixin SHE1, Xing SHU2, Yonggang LIU3, Fuxing WEI1, Xuelei XIA1, Zheng CHEN1()   

  1. 1.School of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2.Key Laboratory of Advanced Manufacture Technology for Automobile Parts (Chongqing University of Technology) Ministry of Education, Chongqing 400054, China
    3.College of Mechanical Engineering, Chongqing University, Chongqing 400030, China
  • Received:2024-10-14 Revised:2024-11-15 Online:2025-04-28 Published:2025-05-20
  • Contact: Zheng CHEN E-mail:shenjiangwei6@kust.edu.cn;chen@kust.edu.cn

摘要:

用户充电过程较强的随机性,导致很难获得完整且固定的充电段用于精确表征电池健康状态的变化。针对充电行为的无序性,提出了一种基于随机健康指标和卷积神经网络的电池健康状态估计方法。对锂电池的原始充电电压时序数据进行分割作为随机充电数据,使用单一卷积神经网络架构从中自适应提取老化特征,并采用蜣螂优化算法对其参数寻优,建立了多阶段模型。仅使用短时随机原始充电电压数据即可实现电池健康状态估计,且有效适用于不同充电模式和充电速率。实验测试验证结果表明,使用连续5 s(100个数据点)的原始电压时序数据,在恒流-恒压充电模式下,锂电池健康状态估计结果平均绝对误差小于2.07%,在多阶段恒流充电模式下,锂电池健康状态估计结果平均绝对误差小于1.22%。

关键词: 健康状态, 随机充电, 数据分割, 卷积神经网络, 锂离子电池

Abstract:

In practical applications, complete charge-discharge curves are often unavailable. To address this issue, this study proposes a lithium-ion battery state of health (SOH) estimation method using short-term stochastic charging data and an optimized convolutional neural network (CNN). The goal is to develop an efficient technique that accommodates the random and disordered nature of charging processes in real-world scenarios. The proposed method segments the original charging voltage time-series data of lithium batteries to generate randomized charging data. A shallow CNN comprising four convolutional layers is then constructed to adaptively extract aging-related features from the data. In addition, the dung beetle optimization algorithm is employed to optimize the model parameters, resulting in a multistage model. The experimental results demonstrate that the proposed method can accurately estimate the SOH of Li-ion batteries during stochastic charging, even when using only five consecutive seconds (100 data points) of raw voltage time-series data. The practicality and accuracy of the proposed model were validated under various charging conditions and rates. The results demonstrate that the model continues to exhibit a low prediction error. The average absolute error of the SOH estimation is less than 2.07% under constant current-voltage charging mode and less than 1.22% under multistage constant current charging mode. In the model comparison, the proposed CNN-based method achieved an average mean absolute error of 1.17%, outperforming integrated prediction models, such as the CNN-Long Short-Term Memory Network and CNN-Gated Recurrent Unit, in terms of estimation accuracy and stability. In addition, the randomized voltage segment used in the CNN accounted for 88.9% of the total charging time, is higher than the other two prediction models. The experimental results demonstrate the effectiveness of the proposed method in addressing the stochastic nature of battery charging data, demonstrating excellent accuracy and high adaptability in the context of charging rates, charging modes, and random charging voltage data over short periods. This results of this study provide a crucial technical reference for future advancement in battery health monitoring and battery management systems.

Key words: state of health, random charging, data segmentation, convolutional neural network, lithium-ion battery

中图分类号: