1 |
WANG Y, FENG X N, GUO D X, et al. Temperature excavation to boost machine learning battery thermochemical predictions[J]. Joule, 2024, 8(9): 2639-2651. DOI: 10.1016/j.joule.2024.07.002.
|
2 |
LU Z X, WANG J, FENG W L, et al. Zinc single-atom-regulated hard carbons for high-rate and low-temperature sodium-ion batteries[J]. Advanced Materials, 2023, 35(26): 2211461. DOI: 10.1002/adma.202211461.
|
3 |
WANG L L, ZHU J C, LI N, et al. Superior electrochemical performance of alkali metal anodes enabled by milder Lewis acidity[J]. Energy & Environmental Science, 2024, 17(10): 3470-3481. DOI: 10.1039/D4EE00900B.
|
4 |
TARASCON J M. Na-ion versus Li-ion batteries: Complementarity rather than competitiveness[J]. Joule, 2020, 4(8): 1616-1620. DOI: 10.1016/j.joule.2020.06.003.
|
5 |
ZHU K J, SUN Z Q, LI Z P, et al. Aqueous sodium ion hybrid batteries with ultra-long cycle life at -50 ℃[J]. Energy Storage Materials, 2022, 53: 523-531. DOI: 10.1016/j.ensm.2022.09.019.
|
6 |
PARK S, WANG Z, CHOUDHARY K, et al. Obtaining V2(PO4)3 by sodium extraction from single-phase NaxV2(PO4)3 (1 < x < 3) positive electrode materials[J]. Nature Materials, 2024[2024-11-04]. https://www.nature.com/articles/s41563-024-02023-7. DOI: 10.1038/s41563-024-02023-7.
|
7 |
REN D S, LIU X, FENG X N, et al. Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy, 2018, 228: 633-644. DOI: 10. 1016/j.apenergy.2018.06.126.
|
8 |
ZHANG Y, SONG L F, TIAN J M, et al. Modeling the propagation of internal thermal runaway in lithium-ion battery[J]. Applied Energy, 2024, 362: 123004. DOI: 10.1016/j.apenergy.2024. 123004.
|
9 |
WANG G Q, PING P, PENG R Q, et al. A semi reduced-order model for multi-scale simulation of fire propagation of lithium-ion batteries in energy storage system[J]. Renewable and Sustainable Energy Reviews, 2023, 186: 113672. DOI: 10.1016/j.rser.2023.113672.
|
10 |
WANG G Q, KONG D P, PING P, et al. Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network[J]. Applied Energy, 2023, 334: 120660. DOI: 10.1016/j.apenergy. 2023.120660.
|
11 |
JIA Z Z, MIN Y Y, QIN P, et al. Effect of safety valve types on the gas venting behavior and thermal runaway hazard severity of large-format prismatic lithium iron phosphate batteries[J]. Journal of Energy Chemistry, 2024, 89: 195-207. DOI: 10.1016/j.jechem. 2023.09.052.
|
12 |
JIA Z Z, SONG L F, MEI W X, et al. The preload force effect on the thermal runaway and venting behaviors of large-format prismatic LiFePO4 batteries[J]. Applied Energy, 2022, 327: 120100. DOI: 10.1016/j.apenergy.2022.120100.
|
13 |
MEI W X, LIU Z, WANG C D, et al. operando monitoring of thermal runaway in commercial lithium-ion cells via advanced lab-on-fiber technologies[J]. Nature Communications, 2023, 14(1): 5251. DOI: 10.1038/s41467-023-40995-3.
|
14 |
WANG H B, XU H, ZHANG Z L, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. DOI: 10.1016/j.etran.2022.100190.
|
15 |
PENG Y, YANG L Z, JU X Y, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: 120916. DOI: 10.1016/j.jhazmat.2019. 120916.
|
16 |
LI J Y, TONG B, GAO P, et al. A novel method to determine the multi-phase ejection parameters of high-density battery thermal runaway[J]. Journal of Power Sources, 2024, 592: 233905. DOI: 10.1016/j.jpowsour.2023.233905.
|
17 |
HWANG S, LEE Y, JO E, et al. Investigation of thermal stability of P2-NaxCoO2 cathode materials for sodium ion batteries using real-time electron microscopy[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18883-18888. DOI: 10.1021/acsami.7b04478.
|
18 |
HEUBNER C, SCHNEIDER M, MICHAELIS A. Heat generation rates of NaFePO4 electrodes for sodium-ion batteries and LiFePO4 electrodes for lithium-ion batteries: A comparative study[J]. Journal of Solid State Electrochemistry, 2018, 22(4): 1099-1108. DOI: 10.1007/s10008-017-3828-4.
|
19 |
ROBINSON J B, FINEGAN D P, HEENAN T M M, et al. Microstructural analysis of the effects of thermal runaway on Li-ion and Na-ion battery electrodes[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1): 011010. DOI: 10. 1115/1.4038518.
|
20 |
BORDES A, MARLAIR G, ZANTMAN A, et al. Safety evaluation of a sodium-ion cell: Assessment of vent gas emissions under thermal runaway[J]. ACS Energy Letters, 2022, 7(10): 3386-3391. DOI: 10.1021/acsenergylett.2c01667.
|
21 |
YUE Y B, JIA Z Z, LI Y Q, et al. Thermal runaway hazards comparison between sodium-ion and lithium-ion batteries using accelerating rate calorimetry[J]. Process Safety and Environmental Protection, 2024, 189: 61-70. DOI: 10.1016/j.psep.2024.06.032.
|
22 |
YANG C, XIN S, MAI L Q, et al. Materials design for high-safety sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974. DOI: 10.1002/aenm.202000974.
|
23 |
HUANG Z H, SHEN T, JIN K Q, et al. Heating power effect on the thermal runaway characteristics of large-format lithium ion battery with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Energy, 2022, 239: 121885. DOI: 10.1016/j.energy.2021.121885.
|
24 |
HUANG Z H, YU Y, DUAN Q L, et al. Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery[J]. Applied Energy, 2022, 325: 119778. DOI: 10.1016/j.apenergy.2022.119778.
|
25 |
LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254. DOI: 10.1016/j.jhazmat.2019.03.116.
|
26 |
ZHOU Z Z, ZHOU X D, PENG Y, et al. Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers[J]. Applied Thermal Engineering, 2021, 185: 116346. DOI: 10.1016/j.applthermaleng.2020.116346.
|
27 |
WEI G, HUANG R J, ZHANG G X, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651. DOI: 10.1016/j.apenergy. 2023.121651.
|
28 |
MEI W X, CHENG Z X, WANG L B, et al. Thermal hazard comparison and assessment of Li-ion battery and Na-ion battery[J]. Journal of Energy Chemistry, 2025, 102: 18-26. DOI: 10.1016/j.jechem.2024.10.036.
|
29 |
LI Z Y, CHENG Z X, YU Y, et al. Thermal runaway comparison and assessment between sodium-ion and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2025, 193: 842-855. DOI: 10.1016/j.psep.2024.11.118.
|