储能科学与技术 ›› 2025, Vol. 14 ›› Issue (11): 4330-4345.doi: 10.19799/j.cnki.2095-4239.2025.0490

• 储能测试与评价 • 上一篇    下一篇

基于深度特征融合模型的电动汽车不同模式充电时长自适应预测

韦介洋1(), 申江卫1(), 陈峥1, 魏福星1, 夏雪磊1, 刘永刚2   

  1. 1.昆明理工大学交通工程学院,云南 昆明 650000
    2.重庆大学机械与运载学院,重庆 400030
  • 收稿日期:2025-05-26 修回日期:2025-06-24 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: 申江卫 E-mail:1391905816@qq.com;shenjiangwei6@kust.edu.cn
  • 作者简介:韦介洋(2001—),男,硕士,研究专业为道路交通运输,E-mail:1391905816@qq.com
  • 基金资助:
    云南省基础研究计划项目(202301AT070423);汽车零部件先进制造技术教育部重点实验室开放课题基金(2023KLMT02)

Adaptive prediction of charging duration for different modes of electric vehicles based on a deep feature fusion model

Jieyang WEI1(), Jiangwei SHEN1(), Zheng CHEN1, Fuxing WEI1, Xuelei XIA1, Yonggang LIU2   

  1. 1.Faculty of Transportation Engineering Kunming University of Science and Technology, Kunming 650000, Yunnan, China
    2.College of Mechanical Engineering Chongqing University, Chongqing 400030, China
  • Received:2025-05-26 Revised:2025-06-24 Online:2025-11-28 Published:2025-11-24
  • Contact: Jiangwei SHEN E-mail:1391905816@qq.com;shenjiangwei6@kust.edu.cn

摘要:

精准预测锂电池充电时长能够提升充电效率、优化资源分配,对电动汽车的发展具有重要意义。本工作提出了一种基于深度特征融合模型的电动汽车不同模式下充电时长自适应预测方法。首先,对新能源汽车监控平台采集的车辆运行数据进行清洗和分割,结合充电电压、电流及平均功率划分充电模式,形成快慢充数据集;接着,基于充电数据集采用主成分分析(PCA)提取模型输入特征;其次,融合Attention注意力机制构建多层感知器(MLP)模型,对输入特征进行非线性映射获取中间特征;考虑到从原始数据中直接提取的特征无法全面反映与充电时长间的复杂关系,故引入随机森林(RF)模型,根据RF内部分裂原理构造叶节点规则特征,发掘隐含的特征信息;然后,在MLP建立“规则层”处理融合的中间特征与规则特征,实现两模型的结构性融合。最后,对Attention MLP-RF融合模型预测结果进行验证,结果显示,融合模型在快、慢充模式下预测平均绝对误差分别为4.25分钟和6.68分钟,平均绝对百分比误差分别仅有4.33%和3.86%,实现了不同电动汽车充电时长的精准预测。同时,该方法对于电池老化和短时充电情况下的充电时长预测仍具有很高的精度,平均预测误差不超过2分钟,融合模型整体具有很强的预测性能及泛化能力。

关键词: 锂离子电池, 数据驱动, 充电模式, 充电时长, 特征融合

Abstract:

Accurately predicting the charging time of lithium batteries can improve charging efficiency and optimize resource allocation-an important factor for developing electric vehicles. This study proposes an adaptive prediction method for electric vehicle charging duration under different modes based on a deep feature fusion model. First, vehicle operation data collected by a new energy vehicle monitoring platform are cleaned and segmented, and charging modes are classified based on voltage, current, and average power to form fast- and slow-charging datasets. Next, based on the charging dataset, principal component analysis is applied to extract model input features. Then, a multilayer perceptron (MLP) model is constructed by integrating the attention mechanism to obtain intermediate features through a nonlinear mapping of input features. As features directly extracted from raw data cannot fully capture the complex relationship with charging duration, a random forest (RF) model is introduced to construct leaf-node rule features based on the internal splitting principle of RF, exploring implicit feature information. A "rule layer" is subsequently established in the MLP to fuse intermediate and rule features, achieving structural fusion of the two models. Finally, the prediction results of the attention MLP-RF fusion model are validated, demonstrating an average absolute error of 4.25 and 6.68 minutes for fast-and slow-charging modes, respectively, with an average absolute percentage error of 4.33% and 3.86%, indicating accurate prediction of different electric vehicle charging durations. Moreover, this method maintains high accuracy in predicting charging duration under battery aging and short-term charging conditions, with an average prediction error of less than 2 min. Overall, the fusion model demonstrates strong predictive performance and generalization capabilities.

Key words: lithium-ion battery, data driven, charge mode, charging duration, feature fusion

中图分类号: