| [1] |
KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an online data-driven approach for prognostics and health management of lithium-ion batteries[J]. Applied Energy, 2022, 308: 118348. DOI: 10.1016/j.apenergy.2021.118348.
|
| [2] |
KIM S, CHOI Y Y, KIM K J, et al. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning[J]. Journal of Energy Storage, 2021, 41: 102893. DOI: 10.1016/j.est.2021.102893.
|
| [3] |
XIA G S, JIA C Y, SHI Y H, et al. Remaining useful life prediction of lithium-ion batteries by considering trend filtering segmentation under fuzzy information granulation[J]. Energy, 2025, 318: 134810. DOI: 10.1016/j.energy.2025.134810.
|
| [4] |
KUMAR R, GOEL V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review[J]. Journal of Energy Storage, 2023, 71: 108025. DOI: 10.1016/j.est.2023.108025.
|
| [5] |
LAI X, QIAN L L, TANG X P, et al. Early-stage remaining useful life prediction for lithium-ion batteries based on geometric output construction[J]. Journal of Energy Storage, 2025, 114: 115792. DOI: 10.1016/j.est.2025.115792.
|
| [6] |
SUI X, HE S, VILSEN S B, et al. A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery[J]. Applied Energy, 2021, 300: 117346. DOI: 10.1016/j.apenergy.2021.117346.
|
| [7] |
YANG M X, SUN X F, LIU R, et al. Predict the lifetime of lithium-ion batteries using early cycles: A review[J]. Applied Energy, 2024, 376: 124171. DOI: 10.1016/j.apenergy.2024.124171.
|
| [8] |
ELMAHALLAWY M, ELFOULY T, ALOUANI A, et al. A comprehensive review of lithium-ion batteries modeling, and state of health and remaining useful lifetime prediction[J]. IEEE Access, 2022, 10: 119040-119070.
|
| [9] |
MA G J, WANG Z D, LIU W B, et al. A two-stage integrated method for early prediction of remaining useful life of lithium-ion batteries[J]. Knowledge-Based Systems, 2023, 259: 110012. DOI: 10.1016/j.knosys.2022.110012.
|
| [10] |
ZHAO W J, DING W, ZHANG S J, et al. Enhancing lithium-ion battery lifespan early prediction using a multi-branch vision transformer model[J]. Energy, 2024, 302: 131816. DOI: 10.1016/j.energy.2024.131816.
|
| [11] |
翟健帆, 李波, 李永利, 等. 基于弛豫电压模型的锂离子电池RUL预测[J]. 电池, 2024,54(4):542-547. DOI: 10.19535/j.1001-1579.2024.04.021.
|
|
ZHAI J F, LI B, LI Y L, et al. RUL prediction of Li-ion battery based on relaxation voltage model[J]. Dianchi(Battery Bimonthly), 2024, 54(4): 542-547. DOI: 10.19535/j.1001-1579.2024.04.021.
|
| [12] |
SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. DOI: 10.1038/s41560-019-0356-8.
|
| [13] |
KE Y Q, JIANG Y Y, ZHU R, et al. Early prediction of knee point and knee capacity for fast-charging lithium-ion battery with uncertainty quantification and calibration[J]. IEEE Transactions on Transportation Electrification, 2024, 10(2): 2873-2885. DOI: 10.1109/TTE.2023.3304670.
|
| [14] |
CELIK B, SANDT R, DOS SANTOS L C P, et al. Prediction of battery cycle life using early-cycle data, machine learning and data management[J]. Batteries, 2022, 8(12): 266. DOI: 10.3390/batteries8120266.
|
| [15] |
AFSHARI S S, CUI S H, XU X Y, et al. Remaining useful life early prediction of batteries based on the differential voltage and differential capacity curves[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 71: 6500709. DOI: 10.1109/TIM.2021. 3117631.
|
| [16] |
李嘉波, 王志璇, 田迪, 等. 变模态分解下SSA-LSTM组合的锂离子电池剩余使用寿命预测方法[J]. 储能科学与技术, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
|
LI J B, WANG Z X, TIAN D, et al. Prediction method for remaining service life of lithium batteries using SSA-LSTM combination under variable mode decomposition[J]. Energy Storage Science and Technology, 2025, 14(2): 659-670. DOI: 10.19799/j.cnki.2095-4239.2024.0732.
|
| [17] |
JIA J F, WANG K K, SHI Y H, et al. A multi-scale state of health prediction framework of lithium-ion batteries considering the temperature variation during battery discharge[J]. Journal of Energy Storage, 2021, 42: 103076. DOI: 10.1016/j.est.2021.103076.
|
| [18] |
WEI M, YE M, ZHANG C W, et al. A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling[J]. Energy, 2023, 283: 129086. DOI: 10.1016/j.energy.2023.129086.
|
| [19] |
GAO K P, SUN J J, HUANG Z Y, et al. Capacity prediction of lithium-ion batteries based on ensemble empirical mode decomposition and hybrid machine learning[J]. Ionics, 2024, 30(11): 6915-6932. DOI: 10.1007/s11581-024-05768-y.
|
| [20] |
WILLIARD N, HE W, OSTERMAN M, et al. Comparative analysis of features for determining state of health in lithium-ion batteries[J]. International Journal of Prognostics and Health Management, 2013, 4(1): DOI: 10.36001/ijphm.2013.v4i1.1437
|
| [21] |
LI H, LI Z, MO W. A time varying filter approach for empirical mode decomposition[J]. Signal Processing, 2017, 138: 146-158. DOI: 10.1016/j.sigpro.2017.03.019.
|
| [22] |
LIU C, WU Y Y, XU Z L, et al. Short-term power load prediction method for high voltage power cables based on IGOA-VMD-LSTM-MHSAM[C]// 2024 The 9th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2024: 1685-1690. DOI: 10.1109/ICPRE62586.2024.10768365.
|
| [23] |
IKOTUN A M, EZUGWU A E, ABUALIGAH L, et al. K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data[J]. Information Sciences, 2023, 622: 178-210. DOI: 10.1016/j.ins.2022.11.139.
|
| [24] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
|
| [25] |
JIAO M, WANG D Q, QIU J L. A GRU-RNN based momentum optimized algorithm for SOC estimation[J]. Journal of Power Sources, 2020, 459: 228051. DOI: 10.1016/j.jpowsour.2020.228051.
|
| [26] |
GHASEMI M, DERICHE M, TROJOVSKÝ P, et al. An efficient bio-inspired algorithm based on humpback whale migration for constrained engineering optimization[J]. Results in Engineering, 2025, 25: 104215. DOI: 10.1016/j.rineng.2025.104215.
|