[1] YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries[J]. Energy Storage Materials, 2016, 5(5):139-164.
[2] ZHOU H. New energy storage devices for post lithium-ion batteries[J]. Energy & Environmental Science, 2013, 6(8):2256-2256.
[3] 李泓, 李晶泽, 师丽红, 等. 锂离子电池纳米材料研究[J]. 电化学, 2000, 6(2):131-145. LI Hong, LI Jingze, SHI Lihong, et al. The studies on nanosized materials for lithium ion batteries[J]. Electrochemistry, 2000, 6(2):131-145.
[4] 韩棠. 深海6500载人潜水器[J]. 模型世界, 2012, 7:54-55.
[5] LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226(3):272-288.
[6] PATEL M, BHATTACHARYYA A J. A crosslinked "polymer-gel" rechargeable lithium-ion battery electrolyte from free radical polymerization using nonionic plastic crystalline electrolyte medium[J]. Energy & Environmental Science, 2011, 4(2):429-432.
[7] 陈立泉. 电动车锂离子电池的材料问题[J].中国工程科学, 2002, 4(11):32-36. CHEN Liquan. Lithium batteries for electric vehicles[J]. Engineering Science, 2002, 4(11):32-36.
[8] ELLIOTT J A. High pressure materials as electrodes for lithium batteries:A computational and experimental approach[J]. Acta Crystallographica, 2006, 62(a1):105.
[9] XIN S, YOU Y, WANG S, et al. Solid-state lithium metal batteries promoted by nanotechnology:Progress and prospects[J]. Acs Energy Letters, 2017, 2(6):1385-1394.
[10] YANG J, MUHAMMAD S, JO M R, et al. In situ analyses for ion storage materials[J]. Chemical Society Reviews, 2016, 47(47):5717-5770.
[11] LIU X, DING G, ZHOU X, et al. An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(22):11124-11130.
[12] HU P, CHAI J, DUAN Y, et al. Progress in nitrile-based polymer electrolytes for high performance lithium batteries[J]. Journal of Materials Chemistry A, 2016, 4(26):10070-10083.
[13] INDA Y, KATOH T, BABA M. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics[J]. Journal of Power Sources, 2007, 174(2):741-744.
[14] ZHU Z, HONG M, GUO D, et al. All-solid-state lithium organic battery with composite polymer electrolyte and pillar
[5] quinone cathode[J]. Journal of the American Chemical Society, 2014, 136(47):16461-16464.
[15] 佚名. 我国全海深固态锂电池完成万米海试[J]. 新材料产业, 2017, 5:83.
[16] CHENG X, ZHANG R, ZHAO C, et al. A review of solid electrolyte interphases on lithium metal anode[J]. Advanced Science, 2016, 3(3):1500213-1500233.
[17] CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5):1075-1101.
[18] WRIGHT P V. Polymer electrolytes-The early days[J]. Electrochimica Acta, 1998, 43(10/11):1137-1143.
[19] ARMAND M B, CHABAGNO J M, DUCLOT M, et al. Fast ion transport in solids[M]. New York:Elsevier, 1979:131.
[20] WATANABE M, ENDO T, NISHIMOTO A, et al. High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether[J]. Journal of Power Sources, 1999, 81(9):786-789.
[21] JUNG S, KIM D W, SANG D L, et al. Fillers for solid-state polymer electrolytes:Highlight[J]. Bulletin-Korean Chemical Society, 2009, 30(10):2355-2361.
[22] GORECKI W, JEANNIN M, BELORIZKY E, et al. Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes[J]. Journal of Physics Condensed Matter, 1995, 7(34):6823-6832.
[23] APPETECCHI G B, ZANE D, SCROSATI B. PEO-based electrolyte membranes based on LIBsC4O8salt[J]. Journal of the Electrochemical Society, 2004, 151(9):A1369-A1374.
[24] CROCE F, SETTIMI L, SCROSATI B, et al. Nanocomposite, PEO-LIBsOB polymer electrolytes for low temperature, lithium rechargeable batteries[J]. Journal of New Materials for Electrochemical Systems, 2006, 9(1):3-9.
[25] REY I, LASSÈGUES J C, GRONDIN J, et al. Infrared and Raman study of the PEO-LiTFSI polymer electrolyte[J]. Electrochimica Acta, 1998, 43(10):1505-1510.
[26] EDMAN L. Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO@LiTFSI[J]. Journal of Physical Chemistry B, 2000, 104(31):7254-7258.
[27] OLEG BORODIN A, GRANT D S. Mechanism of ion transport in amorphous poly(ethyleneoxide)litfsi from molecular dynamics simulations[J]. Macromolecules, 2014, 39(4):1620-1629.
[28] YANG C, LU D, LIU Z. How PEGylation enhances the stability and potency of insulin:A molecular dynamics simulation[J]. Biochemistry, 2011, 50(13):2585-2593. |