Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (9): 2962-2970.doi: 10.19799/j.cnki.2095-4239.2023.0372
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Jianqing YANG1(), Renhong LUO2(), Rong CUI3, Zhifeng WANG4, Yihan LI1
Received:
2023-05-29
Revised:
2023-06-29
Online:
2023-09-05
Published:
2023-09-16
Contact:
Renhong LUO
E-mail:1213256624@qq.com;15171391539@qq.com
CLC Number:
Jianqing YANG, Renhong LUO, Rong CUI, Zhifeng WANG, Yihan LI. Study on heat dissipation performance of polymer electrolyte membrane fuel cell reactor based on ultra-thin uniform temperature plate[J]. Energy Storage Science and Technology, 2023, 12(9): 2962-2970.
Table 3
Main material properties and electrochemical parameters of target fuel cells"
名称 | 数值 |
---|---|
阳极电流密度/(A/m2) | 7.8 |
阳极电荷转换系数 | 1.1 |
阳极浓度指数 | 1.0 |
阳极Pt负载量/(mg/cm2) | 0.27 |
H2O在阳极扩散/(m2/s) | 4.0×10-5 |
阴极电流密度/(A/m2) | 7.2×10-4 |
阴极电荷转换系数 | 1.1 |
阴极浓度指数 | 1.0 |
阴极Pt负载量/(mg/cm2) | 0.53 |
H2O在阴极扩散/(m2/s) | 4.0×10-5 |
H2参考浓度/(mol/m3) | 0.89 |
H2扩散/(m2/s) | 4.0×10-5 |
O2参考浓度/(mol/m3) | 0.89 |
O2扩散/(m2/s) | 4.0×10-5 |
扩散层孔隙率 | 0.7 |
催化剂层孔隙率 | 0.5 |
催化剂层渗透/m2 | 1012 |
膜当量/(kg/mol) | 1.1 |
集流板导热系数/[W/(m·K)] | 100 |
集流板电导率/(S/cm) | 1×104 |
扩散层导热系数/[W/(m·K)] | 10 |
扩散层电导率/(S/cm) | 2.8 |
催化剂层导热系数/[W/(m·K)] | 10 |
催化极层电导率/(S/cm) | 50 |
聚合物电解质膜导热系数/[W/(m·K)] | 0.16 |
1 | HA S J, CHUN U, PARK J Y, et al. Enhancement of aerodynamic performance through high pressure relief in the engine room for passenger car using cfd technique[J]. International Journal of Automotive Technology, 2017, 18(5): 779-784. |
2 | ZHAO X Q, LI Y K, LIU Z X, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056. |
3 | 毛宗强. 氢能——我国未来的清洁能源[J]. 化工学报, 2004, 55(S1): 296-302. |
MAO Z Q. Hydrogen—a future clean energy carrier in China[J]. Journal Fo Chemical Industry and Engineering, 2004, 55(S1): 296-302. | |
4 | 彭明, 夏强峰, 蒋理想, 等. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637. |
PENG M, XIA Q F, JIANG L X, et al. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637. | |
5 | DE LAS HERAS A, VIVAS F J, SEGURA F, et al. Air-cooled fuel cells: Keys to design and build the oxidant/cooling system[J]. Renewable Energy, 2018, 125: 1-20. |
6 | 王琦, 徐晓明, 司红磊, 等. 波形结构冷却流道对燃料电池热管理系统性能影响研究[J]. 中国工程机械学报, 2022, 20(2): 95-100. |
WANG Q, XU X M, SI H L, et al. Study on the influence of waveform structure cooling channel on the performance of fuel cell thermal management system[J]. Chinese Journal of Construction Machinery, 2022, 20(2): 95-100. | |
7 | TETUKO A P, SHABANI B, ANDREWS J. Thermal coupling of PEM fuel cell and metal hydride hydrogen storage using heat pipes[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4264-4277. |
8 | SILVA A P, GALANTE R M, PELIZZA P R, et al. A combined capillary cooling system for fuel cells[J]. Applied Thermal Engineering, 2012, 41: 104-110. |
9 | 陈飞, 罗仁宏. 基于模型预测控制的水冷型燃料电池冷却系统研究[J]. 汽车技术, 2021(7): 8-13. |
CHEN F, LUO R H. Research on water-cooled fuel cell cooling system based on MPC[J]. Automobile Technology, 2021(7): 8-13. | |
10 | 陈思彤, 李微微, 王学科, 等. 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67(S1): 1-6. |
CHEN S T, LI W W, WANG X K, et al. Thermal management using phase change materials for proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67(S1): 1-6. | |
11 | KIM J S, SHIN D H, YOU S M, et al. Thermal performance of aluminum vapor chamber for EV battery thermal management[J]. Applied Thermal Engineering, 2021, 185: 116337. |
12 | PATANKAR G, WEIBEL J A, GARIMELLA S V. Working-fluid selection for minimized thermal resistance in ultra-thin vapor chambers[J]. International Journal of Heat and Mass Transfer, 2017, 106: 648-654. |
13 | LI Y, ZHOU W J, LI Z X, et al. Experimental analysis of thin vapor chamber with composite wick structure under different cooling conditions[J]. Applied Thermal Engineering, 2019, 156: 471-484. |
14 | WANG H W, BAI P F, ZHOU H L, et al. An integrated heat pipe coupling the vapor chamber and two cylindrical heat pipes with high anti-gravity thermal performance[J]. Applied Thermal Engineering, 2019, 159: 113816. |
15 | 王梦妍. 多热源蒸汽腔组件的传热性能研究[D]. 重庆: 重庆大学, 2019. |
WANG M Y. Study on heat transfer performance of vapor chamber module with multiple chips[D]. Chongqing: Chongqing University, 2019. | |
16 | HUANG G W, LIU W Y, LUO Y Q, et al. A novel ultra-thin vapor chamber for heat dissipation in ultra-thin portable electronic devices[J]. Applied Thermal Engineering, 2020, 167: 114726. |
17 | 唐恒. 丝网吸液芯超薄热管制造及其传热性能研究[D]. 广州: 华南理工大学, 2018. |
TANG H. Study on fabrication and heat transfer performance of ultra-thin heat pipe with copper mesh wick[D]. Guangzhou: South China University of Technology, 2018. | |
18 | HUANG G W, LIU W Y, LUO Y Q, et al. Fabrication and thermal performance of mesh-type ultra-thin vapor chambers[J]. Applied Thermal Engineering, 2019, 162: 114263. |
19 | DE SCHEPPER S C K, HEYNDERICKX G J, MARIN G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers & Chemical Engineering, 2009, 33(1): 122-132. |
20 | LEE W H. A pressure iteration scheme for two-phase flow modeling[R]. Los Alamos: Los Alamos Scientific Laboratory,1979. |
21 | HSIEH S S, LEE R Y, SHYU J C, et al. Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar[J]. Energy Conversion and Management, 2007, 48(10): 2708-2717. |
22 | PANDIYAN S, JAYAKUMAR K, RAJALAKSHMI N, et al. Thermal and electrical energy management in a PEMFC stack-An analytical approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 469-473. |
23 | 郭健忠, 罗仁宏, 王之丰, 等. 商用车发动机舱热管理一维/三维联合仿真与试验[J]. 中国机械工程, 2016, 27(4): 526-530. |
GUO J Z, LUO R H, WANG Z F, et al. Test and 1D/3D co-simulation of thermal management for a commercial vehicle engine compartment[J]. China Mechanical Engineering, 2016, 27(4): 526-530. | |
24 | GHASEMI M, RAMIAR A, RANJBAR A A, et al. A numerical study on thermal analysis and cooling flow fields effect on PEMFC performance[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24319-24337. |
[1] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[2] | Cong LI, Tao WANG, Yanjie REN, Libo ZHOU, Jian CHEN, Wei CHEN. Cathodic dissolution and protection of molten carbonate fuel cells [J]. Energy Storage Science and Technology, 2023, 12(8): 2444-2456. |
[3] | Yongshuai YU, Yongfeng LIU, Pucheng PEI, Lu ZHANG, Shengzhuo YAO. Effect of cathode relative humidity on membrane water content and performance of PEMFC [J]. Energy Storage Science and Technology, 2023, 12(6): 1755-1764. |
[4] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
[5] | Xing WANG, Jun SUN, Ningfang CHEN, Li YAN. Modeling of a proton exchange membrane fuel cell cooling system based on the Simscape temperature control strategy [J]. Energy Storage Science and Technology, 2023, 12(3): 857-869. |
[6] | Yongzhen CHEN, Ying HAN, Wenji SONG, Ziping FENG. Research progress of green ammonia energy and ammonia fuel cell [J]. Energy Storage Science and Technology, 2023, 12(1): 111-119. |
[7] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[8] | Changyang LIU, Liuzhen BIAN, Jianquan GAO, Jihua PENG, Jun PENG, Shengli AN. Electrochemical performance of La0.7Sr0.3Fe0.9Ni0.1O3-δ symmetric electrode for solid oxide fuel cell with CO as fuel [J]. Energy Storage Science and Technology, 2022, 11(7): 2059-2065. |
[9] | Jinpeng HAO, Yingchun DU, Hong WU, Kun HE, Lei WANG. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure with sinusoidal temperature distribution [J]. Energy Storage Science and Technology, 2022, 11(5): 1446-1454. |
[10] | Hui TIAN, Dong HUA, Maoli MAN, Chunzhe LIU, Guojun LI, Xiongwen ZHANG. Experimental study on carbon deposition characteristics of planar solid oxide fuel cell [J]. Energy Storage Science and Technology, 2022, 11(5): 1314-1321. |
[11] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[12] | Linhan XIE, Wanzhong LI, Qianqian ZHANG, Gaoping CAO, Jingyi QIU, Hai MING, Wei FENG. Research advances in plant-power generation technology [J]. Energy Storage Science and Technology, 2022, 11(2): 442-466. |
[13] | Dongdong ZHANG, Hua WEN, Hongwei OUYANG. Research on low-temperature pulse heating of a battery based on an electrochemical-thermal coupled model [J]. Energy Storage Science and Technology, 2022, 11(12): 3957-3964. |
[14] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[15] | Wenchao LIAN, Libin LEI, Bo LIANG, Chao WANG, Lei WEI, Zhipeng TIAN, Jianping LIU, Huazheng YANG, Jiajian LIANG, Tao SHI. Utilization and synthesis of ammonia in proton-conducting solid oxide electrochemical devices [J]. Energy Storage Science and Technology, 2021, 10(6): 1998-2007. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||