Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (1): 1-11.doi: 10.19799/j.cnki.2095-4239.2023.0664
Chengjie XU1,2(), Yulin HUANG1(), Zhongfeiyu LIN1, Zhiming LIN1, Chenxi FANG1, Weijun ZHANG1,2, Zhigao HUANG1,2, Jiaxin LI1,2()
Received:
2023-09-26
Revised:
2023-11-03
Online:
2024-01-05
Published:
2024-01-22
Contact:
Jiaxin LI
E-mail:1079854250@qq.com;1527481149@qq.com;lijiaxin@fjnu.edu.cn
CLC Number:
Chengjie XU, Yulin HUANG, Zhongfeiyu LIN, Zhiming LIN, Chenxi FANG, Weijun ZHANG, Zhigao HUANG, Jiaxin LI. Macroscopic fabrication of nano-silicon via sand-milling and investigation of lithium storage performance in carbon fiber composite anodes[J]. Energy Storage Science and Technology, 2024, 13(1): 1-11.
Fig. 3
Silicon materials of different sanding time: (a) X-ray diffraction patterns, (b) Fourier-transform infrared spectra, (c) Raman spectroscopy results, (d) comparative surface area values, (e) cycling results of the initial twenty cycles, (f) initial charge-discharge curves, and (g)—(l) tap density evaluation results"
Fig. 4
Si@CNFs juxtaposed with Cu-Si@CNFs composite of (a) X-ray diffraction patterns, (b) thermogravimetric analysis curves, and (c) Raman spectroscopy results, (d) nitrogen adsorption-desorption isotherms and pore size distribution diagrams, (e) I-V curve results, (f)—(i) X-ray photoelectron spectroscopy spectra, (j)—(k) SEM micrographs at various magnifications, and (l) EDS elemental mapping results"
Fig. 5
Si@CNFs and Cu-Si@CNFs electrodes of (a)—(b) alternating current impedance spectra before and after 150 cycles, (c) the corresponding equivalent circuit and impedance fitting value, (d) cyclic voltammetry curves at a scan rate of 0.5 mV/s, (e) rate capability curves at varied current densities, (f) cycling curves at a current density of 0.3 A/g, and (g) cycling performance at a current density of 1 A/g"
1 | RYU J, HONG D, LEE H W, et al. Practical considerations of Si-based anodes for lithium-ion battery applications[J]. Nano Research, 2017, 10(12): 3970-4002. |
2 | LIU X H, HUANG J Y. In situ TEM electrochemistry of anode materials in lithium ion batteries[J]. Energy & Environmental Science, 2011, 4(10): 3844. |
3 | CHAN C K, PENG H L, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35. |
4 | WANG J Y, HUANG W, KIM Y S, et al. Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries[J]. Nano Research, 2020, 13(6): 1558-1563. |
5 | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
6 | ZHU S S, ZHOU J B, GUAN Y, et al. Hierarchical graphene-scaffolded silicon/graphite composites as high performance anodes for lithium-ion batteries[J]. Small, 2018, 14(47): 1802457. |
7 | WANG F, SONG C S, ZHAO B X, et al. One-pot solution synthesis of carbon-coated silicon nanoparticles as an anode material for lithium-ion batteries[J]. Chemical Communications, 2020, 56(7): 1109-1112. |
8 | JIANG M M, CHEN J L, ZHANG Y B, et al. Assembly: A key enabler for the construction of superior silicon-based anodes[J]. Advanced Science, 2022, 9(30): 2203162. |
9 | ZHANG L, WANG C R, DOU Y H, et al. A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries[J]. Angewandte Chemie International Edition, 2019, 58(26): 8824-8828. |
10 | LIU X Y, ZHANG Q L, ZHU Y S, et al. Trash to treasure: Harmful fly ash derived silicon nanoparticles for enhanced lithium-ion batteries[J]. Silicon, 2022, 14(13): 7983-7990. |
11 | SU X, WU Q L, LI J C, et al. Silicon-based nanomaterials for lithium-ion batteries: A review[J]. Advanced Energy Materials, 2014, 4(1): 1300882. |
12 | SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy Environ Sci, 2011, 4(1): 56-72. |
13 | JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715. |
14 | WANG L B, MEI T, LIU W Q, et al. Low temperature chemical synthesis of silicon nanoparticles as anode materials for lithium-ion batteries[J]. Materials Chemistry and Physics, 2018, 220: 308-312. |
15 | CHEN S, ZHENG S S, SHI A D, et al. Distinctive conductivity improvement by embedding Cu nanoparticles in the carbon shell of submicron Si@C anode materials for LIBs[J]. Sustainable Energy & Fuels, 2022, 6(9): 2306-2313. |
16 | SALAH M, HALL C, MURPHY P, et al. Doped and reactive silicon thin film anodes for lithium ion batteries: A review[J]. Journal of Power Sources, 2021, 506: 230194. |
17 | SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754. |
18 | LI J X, LI Z B, HUANG W J, et al. A facile strategy to construct silver-modified, ZnO-incorporated and carbon-coated silicon/porous-carbon nanofibers with enhanced lithium storage[J]. Small, 2019, 15(18): 1900436. |
19 | LI J X, HUANG Y C, HUANG W J, et al. Simple designed micro-nano Si-graphite hybrids for lithium storage[J]. Small, 2021, 17(8): 2006373. |
20 | HOU Y L, YANG Y, MENG W J, et al. Core-shell structured Si@Cu nanoparticles encapsulated in carbon cages as high-performance lithium-ion battery anodes[J]. Journal of Alloys and Compounds, 2021, 874: 159988. |
21 | XU C J, SHEN L, ZHANG W J, et al. Efficient implementation of kilogram-scale, high-capacity and long-life Si-C/TiO2 anodes[J]. Energy Storage Materials, 2023, 56: 319-330. |
22 | LI X T, YANG D D, HOU X C, et al. Scalable preparation of mesoporous silicon@C/graphite hybrid as stable anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 1-9. |
23 | WANG D K, ZHOU C L, CAO B, et al. One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries[J]. Energy Storage Materials, 2020, 24: 312-318. |
24 | KIM S Y, KIM B H, YANG K S. Preparation and electrochemical characteristics of a polyvinylpyrrolidone-stabilized Si/carbon composite nanofiber anode for a lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2013, 705: 52-56. |
25 | JIN Y, ZHU B, LU Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery[J]. Advanced Energy Materials, 2017, 7(23): 1700715-1700731. |
26 | WANG Q S, MENG T, LI Y H, et al. Consecutive chemical bonds reconstructing surface structure of silicon anode for high-performance lithium-ion battery[J]. Energy Storage Materials, 2021, 39: 354-364. |
27 | TAO J M, YAN Z R, YANG J S, et al. Boosting the cell performance of the SiOx@C anode material via rational design of a Si-valence gradient[J]. Carbon Energy, 2022, 4(2): 129-141. |
28 | HU Z L, ZHAO L B, JIANG T, et al. Trifluoropropylene carbonate-driven interface regulation enabling greatly enhanced lithium storage durability of silicon-based anodes[J]. Advanced Functional Materials, 2019, 29(45): doi: 10.1002/adfm.201906548. |
29 | LIU Q, JI Y X, YIN X M, et al. Magnesiothermic reduction improved route to high-yield synthesis of interconnected porous Si@C networks anode of lithium ions batteries[J]. Energy Storage Materials, 2022, 46: 384-393. |
30 | SONG Y H, ZUO L, CHEN S H, et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@nano-Si as anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2015, 173: 588-594. |
31 | WU Y H, HUANG J L, HOU S C, et al. Cu3Si enhanced crystallinity and dopamine derived nitrogen doping into carbon coated micron-sized Si/Cu3Si as anode material in lithium-ion batteries[J]. Electrochimica Acta, 2021, 387: 138495. |
32 | YANG Y, YANG H X, WU Y Q, et al. Graphene caging core-shell Si@Cu nanoparticles anchored on graphene sheets for lithium-ion battery anode with enhanced reversible capacity and cyclic performance[J]. Electrochimica Acta, 2020, 341: 136037. |
33 | KUTE A D, GAIKWAD R P, WARKAD I R, et al. A review on the synthesis and applications of sustainable copper-based nanomaterials[J]. Green Chemistry, 2022, 24(9): 3502-3573. |
34 | GUO J F, PEI S E, HE Z S, et al. Novel porous Si-Cu3Si-Cu microsphere composites with excellent electrochemical lithium storage[J]. Electrochimica Acta, 2020, 348: 136334. |
35 | MU Y B, HAN M S, WU B K, et al. Nitrogen, oxygen-codoped vertical graphene arrays coated 3D flexible carbon nanofibers with high silicon content as an ultrastable anode for superior lithium storage[J]. Advanced Science, 2022, 9(6): 2104685-2104697. |
36 | XU T, ZHANG J, YANG C Y, et al. Facile synthesis of carbon-coated SiO/Cu composite as superior anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2018, 738: 323-330. |
37 | SUI D, XIE Y Q, ZHAO W M, et al. A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell[J]. Journal of Power Sources, 2018, 384: 328-333. |
38 | SONG H C, WANG H X, LIN Z X, et al. Highly connected silicon-copper alloy mixture nanotubes as high-rate and durable anode materials for lithium-ion batteries[J]. Advanced Functional Materials, 2016, 26(4): 524-531. |
39 | LIN N, ZHOU J, ZHOU J B, et al. Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17544-17548. |
40 | LI P, HWANG J Y, SUN Y K. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery[J]. ACS Nano, 2019: acsnano.9b00169. |
[1] | Chen LI, Huilin ZHANG, Jianping ZHANG. Estimated state of health for retired lithium batteries using kernel function and hyperparameter optimization [J]. Energy Storage Science and Technology, 2024, 13(6): 2010-2021. |
[2] | Chenwei LI, Shiguo XU, Haifeng YU, Songmin YU, Hao JIANG. Synthesis of Mg-doped LiFe0.5Mn0.5PO4/C cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1767-1774. |
[3] | Qi SUN, Hao PENG, Qingguo MENG, Dekai KONG, Rui FENG. Thermal adaptability of energy storage battery pack in extreme conditions [J]. Energy Storage Science and Technology, 2024, 13(6): 2039-2043. |
[4] | Yuchao ZHANG, Fengjiao ZHANG, Wei LOU, Feixiang ZAN, Linling WANG, Anxu SHENG, Xiaohui WU, Jing CHEN. Transformation process of valuable metals in the recycling of spent lithium-ion batteries and the potential environmental impact [J]. Energy Storage Science and Technology, 2024, 13(6): 1861-1870. |
[5] | Runyuan LI, Fu'ao GUO, Gangchao ZHAO. Early warning method for fire safety of containerized lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2024, 13(5): 1595-1602. |
[6] | Yuanhui TANG, Boxing YUAN, Jie LI, Yunlong ZHANG. Study on the safety of cylindrical lithium-ion batteries under nail penetration conditions [J]. Energy Storage Science and Technology, 2024, 13(4): 1326-1334. |
[7] | Bingjin LI, Xiaoxia HAN, Wenjie ZHANG, Weiguo ZENG, Jinde WU. Review of the remaining useful life prediction methods for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(4): 1266-1276. |
[8] | Jiamu YANG, Yuxin CHEN, Cheng LIAN, Zhi XU, Honglai LIU. Flow field analysis and structural optimization of coating die with electrode slurry [J]. Energy Storage Science and Technology, 2024, 13(4): 1109-1117. |
[9] | Mingming SUN. Patent analysis of organic-inorganic composite solid-state electrolytes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(3): 1096-1105. |
[10] | Yi ZHANG, Xiaoyu GE, Zhen LI, Yunhui HUANG. Progress on acoustic and optical sensing technologies for lithium rechargeable batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 167-177. |
[11] | Xiaowei HUANG, Shaopeng LI, Xiaogang ZHANG. Research on the impact and mechanism of the lithium replenishment degree of anode prelithiation on the performance of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2727-2734. |
[12] | Xin GAO, Ruogu WANG, Wenjing GAO, Zejun DENG, Ruiqi LIANG, Kun YANG. Consistency evaluation method of battery pack in energy storage power station based on running data [J]. Energy Storage Science and Technology, 2023, 12(9): 2937-2945. |
[13] | Yonghao HUANG, Guojing ZANG, Weiya ZHU, Youhao LIAO, Weishan LI. Enhancing interfacial stability between lithium-containing ceramic separator and 4.35 V LiNi0.8Co0.1Mn0.1O2 cathode through LiF additives [J]. Energy Storage Science and Technology, 2023, 12(8): 2361-2369. |
[14] | Zhiwei CHEN, Weige ZHANG, Junwei ZHANG, Yanru ZHANG. Comprehensive health assessment and screening method of power battery pack based on visual characteristics of charge curves [J]. Energy Storage Science and Technology, 2023, 12(7): 2211-2219. |
[15] | Chong XU, Ning XU, Zhimin JIANG, Zhongkai LI, Yang HU, Hong YAN, Guoqiang MA. Mechanisms of gas evolution and suppressing strategies based on the electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2119-2133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||