Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (11): 4142-4151.doi: 10.19799/j.cnki.2095-4239.2025.0364
• Energy Storage Materials and Devices • Previous Articles Next Articles
Shilong GUO1(
), Jin SONG1, Jiale GUO1, Xiaoxiao WANG1(
), Keying LIANG2, Yilin WANG3, Zonglin YI3, Lijing XIE3, Xianxian WEI2
Received:2025-04-16
Revised:2025-05-08
Online:2025-11-28
Published:2025-11-24
Contact:
Xiaoxiao WANG
E-mail:1064818857@qq.com;xxwang@tyust.edu.cn
CLC Number:
Shilong GUO, Jin SONG, Jiale GUO, Xiaoxiao WANG, Keying LIANG, Yilin WANG, Zonglin YI, Lijing XIE, Xianxian WEI. Impact of molecular modification on coal-tar-pitch-derived hard carbon for sodium-ion storage[J]. Energy Storage Science and Technology, 2025, 14(11): 4142-4151.
Fig. 6
Analysis of sodium storage mechanism (a) CV curves at different scan rates, (b) the linear relationship between log i and log v of MP3@HC, (c) normalized contribution ratio of capacitive capacities of MP3@HC at different scan rates, (d) the EIS measurements of CTP@SC and MP3@HC, (e) sodium-ion apparent diffusion coefficients of CTP@SC and MP3@HC during the discharge process, (f) sodium-ion apparent diffusion coefficients of CTP@SC and MP3@HC during the charge process"
| [1] | JIN Y, SUN S X, OU M Y, et al. High-performance hard carbon anode: Tunable local structures and sodium storage mechanism[J]. ACS Applied Energy Materials, 2018, 1(5): 2295-2305. DOI: 10.1021/acsaem.8b00354. |
| [2] | PHOGAT P, RAWAT S, DEY S, et al. Advancements and challenges in sodium-ion batteries: A comprehensive review of materials, mechanisms, and future directions for sustainable energy storage[J]. Journal of Alloys and Compounds, 2025, 1020: 179544. DOI: 10.1016/j.jallcom.2025.179544. |
| [3] | MU B Y, CHI C L, YANG X H, et al. A review of hard carbon anodes for rechargeable sodium-ion batteries[J]. New Carbon Materials, 2024, 39(5): 796-823. DOI: 10.1016/S1872-5805(24)60884-X. |
| [4] | ZHONG B, LIU C, XIONG D Y, et al. Biomass-derived hard carbon for sodium-ion batteries: Basic research and industrial application[J]. ACS Nano, 2024, 18(26): 16468-16488. DOI: 10.1021/acsnano.4c03484. |
| [5] | SUN N, ZHAO R, XU M Y, et al. Design advanced nitrogen/oxygen Co-doped hard carbon microspheres from phenolic resin with boosted Na-storage performance[J]. Journal of Power Sources, 2023, 564: 232879. DOI: 10.1016/j.jpowsour.2023.232879. |
| [6] | WANG K F, SUN F, SU Y L, et al. Natural template derived porous carbon nanoplate architectures with tunable pore configuration for a full-carbon sodium-ion capacitor[J]. Journal of Materials Chemistry A, 2021, 9(41): 23607-23618. DOI: 10.1039/D1TA04485K. |
| [7] | LI X W, WANG H R, LIU X, et al. High-performance pitch-based hard carbon for sodium-ion batteries: Introducing oxygen functional groups and regulating closed pores by adjusting pre-oxidation rate[J]. Journal of Energy Storage, 2025, 108: 114995. DOI: 10.1016/j.est.2024.114995. |
| [8] | LIU M K, ZHANG Z, HAN X H, et al. Fabrication of pitch-derived hard carbon via bromination-assisted pyrolysis strategy for sodium-ion batteries[J]. Nanoscale, 2025, 17(13): 8118-8125. DOI: 10.1039/D4NR05322B. |
| [9] | WANG J R, XI L, PENG C X, et al. Recent progress in hard carbon anodes for sodium-ion batteries[J]. Advanced Engineering Materials, 2024, 26(8): 2302063. DOI: 10.1002/adem.202302063. |
| [10] | XIONG Z Y, YUE L, ZHANG Y, et al. Structural regulation of asphalt-based hard carbon microcrystals based on liquid-phase crosslinking to enhance sodium storage[J]. Journal of Colloid and Interface Science, 2024, 658: 610-616. DOI: 10.1016/j.jcis.2023.12.096. |
| [11] | ZHAO G X, XU T Q, ZHAO Y M, et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries[J]. Energy Storage Materials, 2024, 67: 103282. DOI: 10.1016/j.ensm.2024.103282. |
| [12] | GUO H Y, LI Y Y, WANG C L, et al. Effect of the air oxidation stabilization of pitch on the microstructure and sodium storage of hard carbons[J]. New Carbon Materials, 2021, 36(6): 1073-1078. DOI: 10.1016/S1872-5805(21)60075-6. |
| [13] | XIAO K, WANG P Y, BAI J, et al. Deep oxygen-crosslinking and self-coating synergetic engineering on pitch-based hard carbon anode for sodium-ion batteries[J]. Journal of Colloid and Interface Science, 2025, 686: 267-276. DOI: 10.1016/j.jcis.2025.01.220. |
| [14] | SUN C, DU W S, SUN Q. N, P co-doping for microstructural regulation of pitch-derived carbon toward high-rate sodium storage[J]. Journal of Alloys and Compounds, 2025, 1022: 179832. DOI: 10.1016/j.jallcom.2025.179832. |
| [15] | WU J R, YANG T, SONG Y, et al. Preparation of disordered carbon for alkali metal-ion (lithium, sodium, and potassium) batteries by pitch molecular modification: A review[J]. Carbon, 2024, 221: 118902. DOI: 10.1016/j.carbon.2024.118902. |
| [16] | WANG Y W, XIAO N, WANG Z Y, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. DOI: 10.1016/j.cej.2018.01.098. |
| [17] | GAO H, DING L, BAI H, et al. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption[J]. Journal of Materials Chemistry A, 2016, 4(42): 16490-16498. DOI: 10.1039/C6TA07033G. |
| [18] | WANG J, YAN L, LIU B H, et al. A solvothermal pre-oxidation strategy converting pitch from soft carbon to hard carbon for enhanced sodium storage[J]. Chinese Chemical Letters, 2023, 34(4): 107526. DOI: 10.1016/j.cclet.2022.05.040. |
| [19] | XU R, YI Z L, SONG M X, et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor[J]. Carbon, 2023, 206: 94-104. DOI: 10.1016/j.carbon.2023.02.004. |
| [20] | JI Y L, LI S Q, YUAN T, et al. Enhancing the sodium storage performance of hard carbon by constructing thin carbon coatings via esterification reactions[J]. Journal of Colloid and Interface Science, 2025, 677: 719-728. DOI: 10.1016/j.jcis.2024.08.051. |
| [21] | CHU Y, ZHANG J, ZHANG Y B, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: A perspective[J]. Advanced Materials, 2023, 35(31): 2212186. DOI: 10.1002/adma.202212186. |
| [22] | High-performance hard carbon anode: Tunable local structures and sodium storage mechanism [EB/OL].| ACS Applied Energy Materials, [2024-12-24]. https://pubs.acs.org/doi/10.1021/acsaem.8b00354. |
| [23] | ZHANG S H, SUN N, LI X, et al. Closed pore engineering of activated carbon enabled by waste mask for superior sodium storage[J]. Energy Storage Materials, 2024, 66: 103183. DOI: 10.1016/j.ensm.2024.103183. |
| [24] | FAN X Y, KONG X R, ZHANG P T, et al. Research progress on hard carbon materials in advanced sodium-ion batteries[J]. Energy Storage Materials, 2024, 69: 103386. DOI: 10.1016/j.ensm.2024.103386. |
| [25] | ZHAO Y, CONG Y, NING H, et al. N, P Co-doped pitch derived soft carbon nanoboxes as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2022, 918: 165691. DOI: 10.1016/j.jallcom.2022.165691. |
| [26] | CHEN X Y, LIU C Y, FANG Y J, et al. Understanding of the sodium storage mechanism in hard carbon anodes[J]. Carbon Energy, 2022, 4(6): 1133-1150. DOI: 10.1002/cey2.196. |
| [27] | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. DOI: 10.1016/j.ensm.2019.05.008. |
| [28] | REN Q J, WANG J, YAN L, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal, 2021, 425: 131656. DOI: 10.1016/j.cej.2021.131656. |
| [29] | YU T W, LI G H, DUAN Y, et al. The research and industrialization progress and prospects of sodium ion battery[J]. Journal of Alloys and Compounds, 2023, 958: 170486. DOI: 10.1016/j.jallcom.2023.170486. |
| [1] | Wenyan CHEN, Ruilin HE, Jian CHANG, Yonghong DENG. Investigation of lithium storage mechanisms in liquid metal electrodes with different morphologies [J]. Energy Storage Science and Technology, 2025, 14(9): 3290-3300. |
| [2] | Tuo DENG, Haiping ZHOU, Yu LIU, Chang LIU, Zikai LI, Mengqiang WU. Research progress in the preparation of silicon-carbons anode by chemical vapor deposition [J]. Energy Storage Science and Technology, 2025, 14(9): 3354-3372. |
| [3] | Yuxi CHU, Chang MA, Hongguang CHEN, Shaoyu ZHANG, Ping ZHUO. Thermal runaway and gas production characteristics of a 180 Ah sodium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(9): 3611-3618. |
| [4] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Junfeng HAO, Qiangfu SUN, Bowen ZHENG, Yuhao GU, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. Reviews of selected 100 recent papers for lithium batteries (June 1, 2025 to July 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(9): 3229-3248. |
| [5] | Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2025 to May 31 2025) [J]. Energy Storage Science and Technology, 2025, 14(7): 2884-2902. |
| [6] | Zhangjie XU, Zhengyue SUN, Xinyan ZHANG, Jiliang ZHANG, Yingchao YU, Chuang DONG. FeOOH coating on FeS as high-performance anode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(6): 2232-2239. |
| [7] | Deshuai LIU, Huiqin ZHU, Ruihao SUN, Meng LI, Wenhao GONG, Xiaohui LI, Weiwei QIAN. Synergistic dual-additive boost cyclability of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. |
| [8] | Yingjian CHEN, Shang WU, Yuancheng CAO, Baoshuai DU, Zhenxing WANG, Zhongwen OUYANG, Shun TANG. Application of magnetic separation in the recycling of cathode and anode materials from spent lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1918-1927. |
| [9] | Congqing TANG, Jingsheng CAI. Recent advances in presodiation strategies for sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1884-1899. |
| [10] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2025 to March 31, 2025) [J]. Energy Storage Science and Technology, 2025, 14(5): 1727-1747. |
| [11] | Zhongxun AN, Pengcheng LIANG, Chongyang YANG. The influence of different pre-sodiation ratios on the performance of AC//HC sodium-ion capacitors [J]. Energy Storage Science and Technology, 2025, 14(4): 1679-1686. |
| [12] | Youwei WEN, Anqi TENG, Yongqi LI, Jiamin TIAN, Kangjie DING, Qiangling DUAN, Qingsong WANG. Electrical performance and heat production behavior of sodium-ion batteries at different discharge rate [J]. Energy Storage Science and Technology, 2025, 14(4): 1687-1697. |
| [13] | Bohua WEN, Haijun MENG, Yonglong CHEN, Xiaohui LI, Jiayan LUO, Lin LIN, Lan ZHANG. Research progress on high specific-energy solid-state lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1424-1444. |
| [14] | Yongqi LI, Zhiyuan LI, Youwei WEN, Chengdong WANG, Qiangling DUAN, Qingsong WANG. Experimental study of thermal runaway characteristics of large-capacity sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(4): 1657-1667. |
| [15] | Lei WANG, Shaomian LIU, Fenglan FAN, Ziteng YANG. Structure-activity relationships of fast-growing wood based hard carbon anodes for sodium ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1107-1114. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||