Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (1): 42-54.doi: 10.3969/j.issn.2095-4239.2013.01.004
• Research highlight • Previous Articles Next Articles
SUN Yang, DONG Jinping, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, HUANG Xuejie
Received:
2012-12-15
Revised:
2012-12-28
Online:
2013-02-19
Published:
2013-02-19
CLC Number:
SUN Yang, DONG Jinping, TANG Chun, LIN Mingxiang, XU Kaiqi, YAN Yong, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Oct. 1 to Nov. 30, 2012)[J]. Energy Storage Science and Technology, 2013, 2(1): 42-54.
[1] Zhang X H,Yu C,Huang X D,et al. Novel composites Li (Li x Ni 0.34- x Mn 0.47 Co 0.19 O 2 (0.18 ≤ x ≤0.21):Synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries[J]. Electrochim . Acta ,2012,81:233-238. [2] Rosina K J,Jiang M,Zeng D L,et al. Structure of aluminum fluoride coated Li Li 1/9 Ni 1/3 Mn 5/9 O 2 cathodes for secondary lithium-ion batteries[J]. J. Mater . Chem .,2012,22(38):20602-20610. [3] Song B H,Liu Z W,Lai M O,et al. Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material[J]. Phys . Chem . Chem . Phys .,2012,14(37):12875-12883. [4] Amalraj S F,Markovsky B,Sharon D,et al. Study of the electrochemical behavior of the "inactive" Li 2 MnO 3 [J]. Electrochim . Acta ,2012,78:32-39. [5] Cai L,Liu Z C,An K,Liang C D. Probing Li-Ni cation disorder in Li 1- x Ni 1+ x - y Al y O 2 cathode materials by neutron diffraction[J]. J . Electrochem . Soc .,2012,159(7):A924-A928. [6] Chen G Y,Hai B,Shukla A K,Duncan H. Impact of initial Li content on kinetics and stabilities of layered Li 1+ x (Ni 0.33 Mn 0.33 Co 0.33 ) (1- x ) O 2 [J]. J . Electrochem . Soc. ,2012,159(9):A1543-A1550. [7] Murakami M,Yamashige H,Arai H,et al. Association of paramagnetic species with formation of LiF at the surface of LiCoO 2 [J]. Electrochim . Acta ,2012,78:49-54. [8] Nakahara K,Tabuchi M,Kuroshima S,et al. Drastically improved performances of graphite/Li 1.26 Mn 0.52 Fe 0.22 O 2 cell with stepwise pre-cycling treatment that causes peroxide forming[J]. J . Electrochem . Soc .,2012,159(9):A1398-A1404. [9] Conry T E,Mehta A,Cabana J,Doeff M M. Structural underpinnings of the enhanced cycling stability upon Al-substitution in LiNi 0.45 Mn 0.45 CoO 1- y Al y O 2 positive electrode materials for Li-ion batteries[J]. Chem . Mater .,2012,24(17):3307-3317. [10] Sun Y K,Chen Z H,Noh H J,et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nat . Mater .,2012,11(11):942-947. [11] Yim H,Kong W Y,Kim Y C,et al. Electrochemical properties of Li Li 0.2 Mn 0.54 Co 0.13 Ni 0.13 O 2 cathode thin film by RF sputtering for all-solid-state lithium battery[J]. J . Solid State Chem .,2012,196:288-292. [12] Zheng J M,Xiao J,Yu X Q,et al. Enhanced Li + ion transport in LiNi 0.5 Mn 15 O 4 through control of site disorder[J]. Phys . Chem . Chem . Phys .,2012,14(39):13515-13521. [13] Zhong G B,Wang Y Y,Zhao X J,et al. Structural,electrochemical and thermal stability investigations on LiNi 0.5- x Al 2 x Mn 1.5- x O 4 (0≤2 x ≤10)as 5 V cathode materials[J]. J . Power Sources ,2012,216:368-375. [14] Sun W W,Cao F,Liu Y M,et al. Nanoporous LiMn 2 O 4 nanosheets with exposed(111)facets as cathodes for highly reversible lithium-ion batteries[J]. J . Mater . Chem .,2012,22(39):20952-20957. [15] Shin D W,Bridges C A,Huq A,et al. Role of cation ordering and surface segregation in high-voltage spinel LiMn 15 Ni 0.5- x M x O 4 (M = Cr,Fe,and Ga)cathodes for lithium-ion batteries[J]. Chem . Mater .,2012,24(19):3720-3731. [16] Lee E S,Nam K W,Hu E Y,Manthiram A. Influence of cation ordering and lattice distortion on the charge-discharge behavior of LiMn 1.5 Ni 0.5 O 4 spinel between 50 and 20 V[J]. Chem . Mater .,2012,24(18):3610-3620. [17] Lee S,Cho Y,Song H K,et al. Carbon-coated single-crystal LiMn 2 O 4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J]. Angew . Chem . -Int . Edit .,2012,51(35):8748-8752. [18] Demeaux J,Caillon-Caravanier M,Galiano H,et al. LiNi 0 . 4 Mn 16 O 4 /electrolyte and carbon black/electrolyte high voltage interfaces:To evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation[J]. J . Electrochem . Soc .,2012,159(11):A1880-A1890. [19] Gu M,Belharouak I,Genc A,et al. Conflicting roles of nickel in controlling cathode performance in lithium ion batteries[J]. Nano Lett .,2012,12(10):5186-5191. [20] Bhaskar A,Bramnik N N,Trots D M,et al. In situ synchrotron diffraction study of charge-discharge mechanism of sol gel synthesized LiM 0.5 Mn 15 O 4 (M = Fe,Co)[J]. J . Power Sources ,2012,217:464-469. [21] McCalla E,Carey G H,Dahn J R. Lithium loss mechanisms during synthesis of layered Li x Ni 2- x O 2 for lithium ion batteries[J]. Solid State Ion ,2012,219:11-19. [22] Dong Y Z,Xie H,Song J,et al. The prepared and electrochemical property of Mg doped LiMnPO 4 nanoplates as cathode materials for lithium-ion batteries[J]. J . Electrochem . Soc .,2012,159(7):A995-A998. [23] Liu X S,Liu J,Qiao R M,et al. Phase transformation and lithiation effect on electronic structure of Li x FePO 4 :An in-depth study by soft X-ray and simulations[J]. J . Am . Chem . Soc .,2012,134(33):13708-13715. [24] Mba J M A,Croguennec L,Basir N I,et al. Lithium insertion or extraction from/into tavorite-type LiVPO 4 F:An in situ X-ray diffraction study[J]. J . Electrochem . Soc .,2012,159(8):A1171-A1175. [25] Norberg N S,Kostecki R. The degradation mechanism of a composite LiMnPO 4 cathode[J]. J . Electrochem . Soc .,2012,159(9):A1431-A1434. [26] Norberg N S,Kostecki R. Interfacial phenomena at a composite LiMnPO 4 cathode[J]. J . Electrochem . Soc .,2012,159(7):A1091-A1094. [27] van Bommel A,Divigalpitiya R. Effect of calendering LiFePO 4 electrodes[J]. J. Electrochem. Soc. ,2012,159(11):A1791-A1795. [28] Aravindan V,Cheah Y L,Ling W C,Madhavi S. Effect of LiBOB additive on the electrochemical performance of LiCoPO 4 [J]. J . Electrochem . Soc .,2012,159(9):A1435-A1439. [29] Clement R J,Pell A J,Middlemiss D S,et al. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations[J]. J . Am . Chem . Soc .,2012,134(41):17178-17185. [30] Wang J W,Liu X H,Zhao K J,et al. Sandwich-lithiation and longitudinal crack in amorphous silicon coated on carbon nanofibers[J]. ACS Nano ,2012,6(10):9158-9167. [31] Pharr M,Zhao K J,Wang X W,et al. Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries[J]. Nano Lett .,2012,12(9):5039-5047. [32] Son S B,Kim S C,Kang C S,et al. A highly reversible nano-Si anode enabled by mechanical confinement in an electrochemically activated Li x Ti 4 Ni 4 Si 7 matrix[J]. Adv . Energy Mater .,2012,2(10):1226-1231. [33] Soni S K,Sheldon B W,Xiao X C,et al. Diffusion mediated lithiation stresses in Si thin film electrodes[J]. J . Electrochem . Soc .,2012,159(9):A1520-A1527. [34] Su Y Z,Li S,Wu D Q,et al. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage[J]. ACS Nano ,2012,6(9):8349-8356. [35] He Y,Yu X Q,Li G,et al. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction[J]. J . Power Sources ,2012,216:131-138. [36] Koo B,Kim H,Cho Y,et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angew . Chem . -Int . Edit .,2012,51(35):8762-8767. [37] Gu M,Li Y,Li X L,et al. In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix[J]. ACS Nano ,2012,6(9):8439-8447. [38] Han Z J,Yabuuchi N,Shimomura K,et al. High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries[J]. Energy & Environmental Science ,2012,5(10):9014-9020. [39] Elazari R,Salitra G,Gershinsky G,et al. Li ion cells comprising lithiated columnar silicon film anodes,TiS 2 cathodes and fluoroethyene carbonate(FEC) as a critically important component[J]. J . Electrochem . Soc .,2012,159(9):A1440-A1445. [40] Mao S,Wen Z H,Kim H,et al. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications[J]. ACS Nano ,2012,6(8):7505-7513. [41] Yamada M,Inaba A,Ueda A,et al. Reaction mechanism of "SiO"-carbon composite-negative electrode for high-capacity lithium-ion batteries[J]. J . Electrochem . Soc .,2012,159(10):A1630-A1635. [42] Harris S J,Rahani E K,Shenoy V B. Direct in situ observation and numerical simulations of non-shrinking-core behavior in an MCMB graphite composite[J]. J . Electrochem . Soc .,2012,159(9):A1501-A1507. [43] Jang B,Park M,Chae O B,et al. Direct synthesis of self-assembled ferrite/carbon hybrid nanosheets for high performance lithium-ion battery anodes[J]. J . Am . Chem . Soc .,2012,134(36):15010-15015. [44] Li X F,Yang J L,Hu Y H,et al. Novel approach toward a binder-free and current collector-free anode configuration:Highly flexible nanoporous carbon nanotube electrodes with strong mechanical strength harvesting improved lithium storage[J]. J . Mater . Chem .,2012,22(36):18847-18853. [45] Li X L,Qi W,Mei D H,et al. Functionalized graphene sheets as molecular templates for controlled nucleation and self-assembly of metal oxide-graphene nanocomposites[J]. Adv . Mater .,2012,24(37):5136-5141. [46] Kitta M,Akita T,Maeda Y,Kohyama M. Study of surface reaction of spine l Li 4 Ti 5 O 12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy[J]. Langmuir ,2012,28(33):12384-12392. [47] Ganapathy S,Wagemaker M. Nanosize storage properties in spinel Li 4 Ti 5 O 12 explained by anisotropic surface lithium insertion[J]. ACS Nano ,2012,6(10):8702-8712. [48] Zheng Z F,Wang Y. 3D structure of electrode with inorganic solid electrolyte[J]. J . Electrochem . Soc .,2012,159(8):A1278-A1282. [49] Zhao Y S,Daemen L L. Superionic conductivity in lithium-rich anti-perovskites[J]. J . Am . Chem . Soc .,2012,134(36):15042-15047. [50] Woo J H,Trevey J E,Cavanagh A S,et al. Nanoscale interface modification of LiCoO 2 by Al 2 O 3 atomic layer deposition for solid-state Li batteries[J]. J . Electrochem . Soc .,2012,159(7):A1120-A1124. [51] Arruda T M,Kumar A,Kalinin S V,et al. The partially reversible formation of Li-metal particles on a solid Li electrolyte:Applications toward nanobatteries[J]. Nanotechnology ,2012,23(32). [52] ChikuM,TsujiwakiW,Higuchi E,et al. Microelectrode studies on kinetics of charge transfer at an interface of Li metal and Li 2 S-P 2 S 5 solid electrolytes[J]. Electrochemistry ,2012,80(10):740-742. [53] Domi Y,Ochida M,Tsubouchi S,et al. Electrochemical AFM observation of the HOPG edge plane in ethylene carbonate-based electrolytes containing film-forming additives[J]. J . Electrochem . Soc .,2012,159(8):A1292-A1297. [54] Liu Y B,Cai Z J,Tan L,Li L. Ion exchange membranes as electrolyte for high performance Li-ion batteries[J]. Energy & Environmental Science ,2012,5(10):9007-9013. [55] Xia X,Ping P,Dahn J R. The reactivity of charged electrode materials with electrolytes containing the flame retardant,triphenyl phosphate[J]. J . Electrochem . Soc .,2012,159(11):A1834-A1837. [56] Zhou S S,Han H B,Nie J,et al. Improving the high-temperature resilience of LiMn 2 O 4 based batteries:LiFNFSI an effective salt[J]. J . Electrochem . Soc .,2012,159(8):A1158-A1164. [57] Zuo X,Liu X M,Cai F,et al. A novel all-solid electrolyte based on a co-polymer of poly-(methoxy/hexadecal-poly(ethylene glycol)methacrylate)for lithium-ion cell[J]. J . Mater . Chem .,2012,22(41):22265-22271. [58] Kramer E,Schmitz R,Niehoff P,et al. SEI-forming mechanism of 1-fluoropropane-2-one in lithium-ion batteries[J]. Electrochim . Acta ,2012,81:161-165. [59] Wang Z L,Xu D,Xu J J,et al. Graphene oxide gel-derived,free-standing,hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O 2 batteries[J]. Adv . Functional Mater .,2012,22(17):3699-3705. [60] Younesi R,Hahlin M,Treskow M,et al. Ether based electrolyte,LiB(CN)(4)salt and binder degradation in the Li-O 2 battery studied by hard X-ray photoelectron spectroscopy(HAXPES)[J]. J . Phy . Chem . C ,2012,116(35):18597-18604. [61] Shui J L,Karan N K,Balasubramanian M,et al. Fe/N/C composite in Li-O 2 battery:Studies of catalytic structure and activity toward oxygen evolution reaction[J]. J . Am . Chem . Soc .,2012,134(40):16654-16661. [62] Herranz J,Garsuch A,Gasteiger H A. Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li-air battery electrolytes[J]. J . Phy . Chem . C ,2012,116(36):19084-19094. [63] Kitaura H,Zhou H S. Electrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium,Li 1+ x Al y Ge 2- y (PO 4 ) 3 solid electrolyte and carbon nanotube air electrode[J]. Energy & Environmental Science ,2012,5(10):9077-9084. [64] Leskes M,Drewett N E,Hardwick L J,et al. Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy[J]. Angew . Chem . -Int . Edit .,2012,51(34):8560-8563. [65] Lu Y C,Crumlin E J,Veith G M,et al. In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions[R]. Scientific Reports,2012:2. [66] Nakanishi S,Mizuno F,Nobuhara K,et al. Influence of the carbon surface on cathode deposits in non-aqueous Li-O 2 batteries[J]. Carbon ,2012,50(13):4794-4803. [67] Dong S M,Chen X,Wang S,et al. 1D coaxial platinum/titanium nitride nanotube arrays with enhanced electrocatalytic activity for the oxygen reduction reaction:Towards Li-air batteries[J]. Chemsuschem ,2012,5(9):1712-1715. [68] Gallant B M,Mitchell R R,Kwabi D G,et al. Chemical and morphological changes of Li-O 2 battery electrodes upon cycling[J]. J . Phy . Chem . C ,2012,116(39):20800-20805. [69] Yang W,Salim J,Li S A,et al. Perovskite Sr 0.95 Ce 0.05 CoO 3 -delta loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries[J]. J . Mater . Chem .,2012,22(36):18902-18907. [70] Zhang T,Zhou H S. From Li-O 2 to Li-air batteries:Carbon nanotubes/ionic liquid gels with a tricontinuous passage of electrons,ions,and oxygen[J]. Angew . Chem . -Int . Edit .,2012,51(44):11062-11067. [71] Yang Y,Zheng G Y,Misra S,et al. High-capacity micrometer-sized Li 2 S particles as cathode materials for advanced rechargeable lithium-ion batteries[J]. J . Am . Chem . Soc .,2012,134(37):15387-15394. [72] Yeon J T,Jang J Y,Han J G,et al. Raman spectroscopic and X-ray diffraction studies of sulfur composite electrodes during discharge and charge[J]. J . Electrochem . Soc .,2012,159(8):A1308-A1314. [73] Zhang L,Ji L W,Glans P A,et al. Electronic structure and chemical bonding of a graphene oxide-sulfur nanocomposite for use in superior performance lithium-sulfur cells[J]. Phys . Chem . Chem . Phys .,2012,14(39):13670-13675. [74] Zhou G M,Wang D W,Li F,et al. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries[J]. Energy & Environmental Science ,2012,5(10):8901-8906. [75] Ates M N,Allen C J,Mukerjee S,Abraham K M. Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries[J]. J . Electrochem . Soc .,2012,159(7):A1057-A1064. [76] Diao Y,Xie K,Xiong S Z,Hong X B. Insights into Li-S battery cathode capacity fading mechanisms:Irreversible oxidation of active mass during cycling[J]. J . Electrochem . Soc .,2012,159(11):A1816-A1821. [77] Evers S,Yim T,Nazar L F. Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery[J]. J . Phy . Chem . C ,2012,116(37):19653-19658. [78] Koo M,Park K I,Lee S H,et al. Bendable inorganic thin-film battery for fully flexible electronic systems[J]. Nano . Lett .,2012,12(9):4810-4816. [79] Ogihara N,Kawauchi S,Okuda C,et al. Theoretical and experimental analysis of porous electrodes for lithium-ion batteries by electrochemical impedance spectroscopy using a symmetric cell[J]. J . Electrochem . Soc .,2012,159(7):A1034-A1039. [80] Baker D R,Verbrugge M W. Intercalate diffusion in multiphase electrode materials and application to lithiated graphite[J]. J . Electrochem . Soc .,2012,159(8):A1341-A1350. [81] Chen Q N,Liu Y Y,Liu Y M,et al. Delineating local electromigration for nanoscale probing of lithium ion intercalation and extraction by electrochemical strain microscopy[J]. Appl . Phys . Lett .,2012,101(6). [82] Ishikawa H,Nishikawa Y,Mendoza O,et al. Chronopotentiometric investigation of anode deterioration in lithium ion secondary cell incorporating reference electrode[J]. Electrochemistry ,2012,80(10):762-764. [83] Klass V,Behm M,Lindbergh G. Evaluating real-life performance of lithium-ion battery packs in electric vehicles[J]. J . Electrochem . Soc .,2012,159(11):A1856-A1860. [84] Krause L J,Jensen L D,Dahn J R. Measurement of parasitic reactions in Li ion cells by electrochemical calorimetry[J]. J . Electrochem . Soc .,2012,159(7):A937-A943. [85] Illig J,Ender M,Chrobak T,et al. Separation of charge transfer and contact resistance in LiFePO 4 -cathodes by impedance modeling[J]. J . Electrochem . Soc .,2012,159(7):A952-A960. [86] Delacourt C,Safari M. Life simulation of a graphite/LiFePO 4 cell under cycling and storage[J]. J . Electrochem . Soc .,2012,159(8):A1283-A1291. [87] Dubarry M,Truchot C,Liaw B Y. Synthesize battery degradation modes via a diagnostic and prognostic model[J]. J . Power Sources ,2012,219:204-216. [88] Sagane F,Abe T,Ogumi Z. Electrochemical analysis of lithium-ion transfer reaction through the interface between ceramic electrolyte and ionic liquids[J]. J . Electrochem . Soc .,2012,159(11):A1766-A1769. [89] Deshpande R,Verbrugge M,Cheng Y T,et al. Battery cycle life prediction with coupled chemical degradation and fatigue mechanics[J]. J . Electrochem . Soc .,2012,159(10):A1730-A1738. [90] Sinha N N,Marks T H,Dahn H M,et al. The rate of active lithium loss from a soft carbon negative electrode as a function of temperature,time and electrode potential[J]. J . Electrochem . Soc .,2012,159(10):A1672-A1681. [91] Ye Y H,Shi Y X,Tay A A O. Electro-thermal cycle life model for lithium iron phosphate battery[J]. J . Power Sources ,2012,217:509-518. [92] Yan B,Lim C,Yin L L,Zhu L K. Three dimensional simulation of galvanostatic discharge of LiCoO 2 cathode based on X-ray nano-CT images[J]. J . Electrochem . Soc .,2012,159(10):A1604-A1614. [93] Chan M K Y,Wolverton C,Greeley J P. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon[J]. J . Am . Chem . Soc .,2012,134(35):14362-14374. [94] Jung S C,Choi J W,Han Y K. Anisotropic volume expansion of crystalline silicon during electrochemical lithium insertion:An atomic level rationale[J]. Nano . Lett .,2012,12(10):5342-5347. [95] Lee E,Persson K A. Li absorption and intercalation in single layer graphene and few layer graphene by first principles[J]. Nano . Lett .,2012,12(9):4624-4628. [96] Martin L,Vallverdu G,Martinez H,et al. First principles calculations of solid-solid interfaces:An application to conversion materials for lithium-ion batteries[J]. J . Mater . Chem .,2012,22(41):22063-22071. [97] Shi S Q,Lu P,Liu Z Y,et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. J . Am . Chem . Soc .,2012,134(37):15476-15487. [98] Belharouak I,Koenig G M,Tan T,et al. Performance degradation and gassing of Li 4 Ti 5 O 12 /LiMn 2 O 4 lithium-ion cells[J]. J . Electrochem . Soc .,2012,159(8):A1165-A1170. [99] Cherkashinin G,Nikolowski K,Ehrenberg H,et al. The stability of the SEI layer,surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling:X-ray photoelectron spectroscopy investigation[J]. Phys . Chem . Chem . Phys .,2012,14(35):12321-12331. [100] Guyot E,Seghir S,Diliberto S,et al. Lithium recovery by electrochemical transfer junction based on intercalation host matrix[J]. Electrochem . Commun .,2012,23:29-32. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[14] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[15] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||