Energy Storage Science and Technology ›› 2014, Vol. 3 ›› Issue (4): 364-375.doi: 10.3969/j.issn.2095-4239.2014.04.011
• Research highlight • Previous Articles Next Articles
XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2014-06-10
Online:
2014-07-01
Published:
2014-07-01
CLC Number:
XU Kaiqi, LIN Mingxiang, TANG Daichun, SUN Yang, YAN Yong, CHEN Bin, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Apr.1,2014 to May 31,2014)[J]. Energy Storage Science and Technology, 2014, 3(4): 364-375.
[1] Yu X Q,Lyu Y C,Gu L, et al. Understanding the rate capability of high-energy-density Li-rich layered Li 1.2 Ni 0.15 Co 0.1 Mn 0.55 O 2 cathode materials[J]. Advanced Energy Materials ,2014,doi:10.1002/ aenm.201300950. [2] Yu H J,Qian Y M,Otani M R, et al. Study of the lithium/nickel ions exchange in the layered LiNi 0.42 Mn 0.42 Co 0.16 O 2 cathode material for lithium ion batteries:Experimental and first-principles calculations[J]. Energy & Environmental Science ,2014,7(3):1068-1078. [3] Choi W,Benayard A,Park J H, et al. Versatile coating of lithium conductive Li 2 TiF 6 on over-lithiated layered oxide in lithium-ion batteries[J]. Electrochimica Acta ,2014,117:492-497. [4] Han Z H,Yu J P,Zhan H, et al. Sb 2 O 3 -modified LiNi 1/3 Co 1/3 Mn 1/3 O 2 material with enhanced thermal safety and electrochemical property[J]. Journal of Power Sources ,2014,254:106-111. [5] Koga H,Croguennec L,Menetrier M, et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li 1.20 Mn 0.54 Co 0.13 Ni 0.13 O 2 in Li ion batteries[J]. Journal of Physical Chemistry C ,2014,118(11):5700-5709. [6] Watanabe S,Kinoshita M,Hosokawa T, et al. Capacity fade of LiAl y Ni 1- x - y Co x O 2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAl y Ni 1- x - y Co x O 2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources ,2014,258:210-217. [7] Zhang H Z,Qiao Q Q,Li G R, et al. PO 4 3- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(20):7454-7460. [8] Xia S B,Zhang Y J,Dong P, et al. CeO 2 surface modification to improve cycle and storage performance on lithium ion battery cathode material LiNi 0.80 Co 0.15 Al 0.05 O 2 [J]. Chinese Journal of Inorganic Chemistry ,2014,30(3):529-535. [9] Idemoto Y,Inoue M,Kitamura N. Composition dependence of average and local structure of x Li(Li 1/3 Mn 2/3 )O 2 -(1- x )Li(Mn 1/3 Ni 1/3 Co 1/3 )O 2 active cathode material for Li-ion batteries[J]. Journal of Power Sources ,2014,259:195-202. [10] Lin F,Markus I M,Nordlund D, et al. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries[J]. Nature Communications ,2014,doi:10.1038/ncomms4529. [11] Villevieille C,Lanz P,Bunzli C, et al. Bulk and surface analyses of ageing of a 5 V-NCM positive electrode material for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(18):6488-6493. [12] Chen Y P,Zhang Y,Chen B J, et al. An approach to application for LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode material at high cutoff voltage by TiO 2 coating[J]. Journal of Power Sources ,2014,256:20-27. [13] Ghanty C,Basu R N,Majumder S B. Electrochemical performances of 0.9Li 2 MnO 3 -0.1Li(Mn 0.375 Ni 0.375 Co 0.25 )O 2 cathodes:Role of the cycling induced layered to spinel phase transformation[J]. Solid State Ionics ,2014,256:19-28. [14] Guo S H,Yu H J,Liu P, et al. Surface coating of lithium-manganese-rich layered oxides with delaminated MnO 2 nanosheets as cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(12):4422-4428. [15] Ju S H,Kang I S,Lee Y S, et al. Improvement of the cycling performance of LiNi 0.6 Co 0.2 Mn 0.2 O 2 cathode active materials by a dual-conductive polymer coating[J]. ACS Applied Materials & Interfaces ,2014,6(4):2545-2551. [16] Liu M H,Huang H T,Lin C M, et al. Mg gradient-doped LiNi 0.5 Mn 1.5 O 4 as the cathode material for Li-ion batteries[J]. Electrochimica Acta ,2014,120:133-139. [17] Yang Z,Jiang Y,Kim J H, et al. The LiZn x Ni 0.5- x Mn 1.5 O 4 spinel with improved high voltage stability for Li-ion batteries[J]. Electrochimica Acta ,2014,117:76-83. [18] Chae J S,Yoon S B,Yoon W S ,et al. Enhanced high-temperature cycling of Li 2 O-2B 2 O 3 -coated spinel-structured LiNi 0.5 Mn 1.5 O 4 cathode material for application to lithium-ion batteries[J]. Journal of Alloys and Compounds ,2014,601:217-222. [19] Yoon T,Kim D,Park K H, et al. Compositional change of surface film deposited on LiNi 0.5 Mn 1.5 O 4 positive electrode[J]. Journal of the Electrochemical Society ,2014,161(4):A519-A523. [20] Park J S,Oh S M,Sun Y K, et al. Thermal properties of fully delithiated olivines[J]. Journal of Power Sources ,2014,256:479-484. [21] Dua J,Kong L B,Liu H, et al. Template-free synthesis of porous-LiFePO 4 /C nanocomposite for high power lithium-ion batteries[J]. Electrochimica Acta ,2014,123:1-6. [22] Fan Q,Lei L X,Xu X Y, et al. Direct growth of FePO 4 /graphene and LiFePO 4 /graphene hybrids for high rate Li-ion batteries[J]. Journal of Power Sources ,2014,257:65-69. [23] Berla L A,Lee S W,Ryu I, et al. Robustness of amorphous silicon during the initial lithiation/delithiation cycle[J]. Journal of Power Sources ,2014,258:253-259. [24] Chevrier V L,Liu L,Le D B, et al. Evaluating Si-based materials for Li-ion batteries in commercially relevant negative electrodes[J]. Journal of the Electrochemical Society ,2014,161(5):A783-A791. [25] Brushett F R,Trahey L,Xiao X H, et al. Full-field synchrotron tomography of nongraphitic foam and laminate anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(6):4524-4534. [26] Fan X,Tang X N,Ma D Q, et al. Novel hollow Sn-Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction[J]. Journal of Solid State Electrochemistry ,2014,18(4):1137-1145. [27] Hang T,Mukoyama D,Nara H, et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode[J]. Journal of Power Sources ,2014,256:226-232. [28] Mcallister Q P,Strawhecker K E,Becker C R, et al. In situ atomic force microscopy nanoindentation of lithiated silicon nanopillars for lithium ion batteries[J]. Journal of Power Sources ,2014,257:380-387. [29] Ogata K,Salager E,Kerr C J, et al. Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy[J]. Nature Communications ,2014,doi:10.1038/ncomms4217. [30] Su Q M,Xie J,Zhang J, et al. In situ transmission electron microscopy observation of electrochemical behavior of CoS 2 in lithium-ion battery[J]. ACS Applied Materials & Interfaces ,2014,6(4):3023-3029. [31] Yu B C,Hwa Y,Kim J H, et al. A new approach to synthesis of porous SiO x anode for Li-ion batteries via chemical etching of Si crystallites[J]. Electrochimica Acta ,2014,117:426-430. [32] Favors Z,Wang W,Bay H H, et al. Stable cycling of SiO 2 nanotubes as high-performance anodes for lithium-ion batteries[J]. Scientific Reports ,2014,4:4605. [33] Wang D S,Gao M X,Pan H G, et al. High performance amorphous-Si@SiO x /C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization[J]. Journal of Power Sources ,2014,256:190-199. [34] Aravindan V,Sundaramurthy J,Kumar E N, et al. Does carbon coating really improves the electrochemical performance of electrospun SnO 2 anodes?[J]. Electrochimica Acta ,2014,121:109-115. [35] Pang W K,Peterson V K,Sharma N, et al. Lithium migration in Li 4 Ti 5 O 12 studied using in situ neutron powder diffraction[J]. Chemistry of Materials ,2014,26(7):2318-2326. [36] Vargas O,Caballero A,Morales J, et al. Contribution to the understanding of capacity fading in graphene nanosheets acting as an anode in full Li-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(5):3290-3298. [37] Ding L P,He S L,Miao S D, et al. Ultrasmall SnO 2 Nanocrystals:Hot-bubbling synthesis, encapsulation in carbon layers and applications in high capacity Li-ion storage[J]. Scientific Reports ,2014,doi:10.1002/adma.201401194 . 2. [38] Fu W,Du F H,Wang K X, et al. In situ growth of ultrafine tin oxide nanocrystals embedded in graphitized carbon nanosheets for use in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(19):6960-6965. [39] Lian P C,Wang J Y,Cai D D, et al. Design and synthesis of porous nano-sized Sn@C/graphene electrode material with 3D carbon network for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds ,2014,604:188-195. [40] Mukherjee R,Thomas A V,Datta D, et al. Defect-induced plating of lithium metal within porous graphene networks[J]. Nature Communications ,2014,doi:10.1038/ncomms4710. [41] Song H W,Li N,Cui H, et al. Enhanced storage capability and kinetic processes by pores-and hetero-atoms-riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes[J]. Nano Energy ,2014,4:81-87. [42] Kajita T,Yuge R,Nakahara K, et al. Deterioration analysis in cycling test at high temperature of 60 ℃for Li-ion cells using sio anode[J]. Journal of the Electrochemical Society ,2014,161(5):A708-A711. [43] Thomas R,Rao G M. Phase and dimensionality of tin oxide at graphene nanosheet array and its electrochemical performance as anode for lithium ion battery[J]. Electrochimica Acta ,2014,125:380-385. [44] Ahn J H,Park S Y,Lee J M, et al. Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li 7 La 3 Zr 2 O 12 [J]. Journal of Power Sources ,2014,254:287-292. [45] Braga M H,Ferreira J A,Stockhausen V, et al. Novel Li 3 ClO based glasses with superionic properties for lithium batteries[J]. Journal of Materials Chemistry A ,2014,2(15):5470-5480. [46] Ma C,Chen K,Liang C D, et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy & Environmental Science ,2014,7(5):1638-1642. [47] Teragawa S,Aso K,Tadanaga K, et al. Liquid-phase synthesis of a Li 3 PS 4 solid electrolyte using N -methylformamide for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A ,2014,2(14):5095-5099. [48] Yong T Q,Wang J L,Mai Y J, et al. Organosilicon compounds containing nitrile and oligo (ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources ,2014,254:29-32. [49] Bordes A,Eom K,Fuller T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources ,2014,257:163-169. [50] Niedzicki L,Karpierz E,Bitner A, et al. Optimization of the lithium-ion cell electrolyte composition through the use of the LiTDI salt[J]. Electrochimica Acta ,2014,117:224-229. [51] Wang D Y,Sinha N N,Burns J C, et al. A comparative study of vinylene carbonate and fluoroethylene carbonate additives for LiCoO 2 /graphite pouch cells[J]. Journal of the Electrochemical Society ,2014,161(4):A467-A472. [52] Benmayza A,Lu W Q,Ramani V, et al. Electrochemical and thermal studies of LiNi 0.8 Co 0.15 Al 0.015 O 2 under fluorinated electrolytes[J]. Electrochimica Acta ,2014,123:7-13. [53] Cho Y G,Kim Y S,Sung D G, et al. Nitrile-assistant eutectic electrolytes for cryogenic operation of lithium ion batteries at fast charges and discharges[J]. Energy & Environmental Science ,2014,7(5):1737-1743. [54] Matsumoto K,Nakahara K,Inoue K, et al. Performance improvement of Li ion battery with non-flammable TMP mixed electrolyte by optimization of lithium salt concentration and SEI preformation technique on graphite anode[J]. Journal of the Electrochemical Society ,2014,161(5):A831-A834. [55] Kim G Y,Petibon R,Dahn J R. Effects of succinonitrile (SN) as an electrolyte additive on the impedance of LiCoO 2 /graphite pouch cells during cycling[J]. Journal of the Electrochemical Society ,2014,161(4):A506-A512. [56] Zhang J,Wang J L,Yang J, et al. Artificial interface deriving from sacrificial tris (trimethylsilyl) phosphate additive for lithium rich cathode materials[J]. Electrochimica Acta ,2014,117:99-104. [57] Bae S Y,Shin W K,Kim D W. Protective organic additives for high voltage LiNi 0.5 Mn 1.5 O 4 cathode materials[J]. Electrochimica Acta ,2014,125:497-502. [58] Janssen P,Schmitz R,Muller R, et al. 1,3,2-Dioxathiolane-2, 2-dioxide as film-forming agent for propylene carbonate based electrolytes for lithium-ion batteries[J]. Electrochimica Acta ,2014,125:101-106. [59] Li S Y,Zhao W,Zhou Z F, et al. Studies on electrochemical performances of novel electrolytes for wide-temperature-range lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(7):4920-4926. [60] Liao C,Han K S,Baggetto L, et al. Synthesis and characterization of lithium bis (fluoromalonato) borate for lithium-ion battery applications[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201301368. [61] Xu M Q,Tsiouvaras N,Garsuch A, et al. Generation of cathode passivation films via oxidation of lithium bis (oxalato) borate on high voltage spinel (LiNi 0.5 Mn 1.5 O 4 )[J]. Journal of Physical Chemistry C ,2014,118(14):7363-7368. [62] Yang J P,Zhao P,Shang Y M, et al. Improvement in high-voltage performance of lithium-ion batteries using bismaleimide as an electrolyte additive[J]. Electrochimica Acta ,2014,121:264-269. [63] Chernyshov D V,Krachkovskiy S A,Kapylou A V, et al. Substituted dioxaphosphinane as an electrolyte additive for high voltage lithium-ion cells with overlithiated layered oxide[J]. Journal of the Electrochemical Society ,2014,161(4):A633-A642. [64] Bouayad H,Wang Z,Dupre N, et al. Improvement of electrode/electrolyte interfaces in high-voltage spinel lithium-ion batteries by using glutaric anhydride as electrolyte additive[J]. Journal of Physical Chemistry C ,2014,118(9):4634-4648. [65] Kim J S,Byun D,Lee J K. Electrochemical characteristics of amorphous silicon thin film electrode with fluoroethylene carbonate additive[J]. Current Applied Physics ,2014,14(4):596-602. [66] Gallagher k G,Goebel S,Greszler T, et al. Quantifying the promise of lithium-air batteries for electric vehicles[J]. Energy & Environmental Science ,2014,7(5):1555-1563. [67] Lu J,Lei Y,Lau K C, et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries[J]. Nature Communications ,2014,doi:10.1038/ncomms3383. [68] Khetan A,Pitsch H,Viswanathan V. Identifying descriptors for solvent stability in nonaqueous Li-O 2 batteries[J]. Journal of Physical Chemistry Letters ,2014,5(8):1318-1323. [69] Huang C,Xiao J,Shao Y Y, et al. Manipulating surface reactions in lithium-sulphur batteries using hybrid anode structures[J]. Nature Communications ,2014,doi:10.1038/ncomms4015. [70] Liu Z,Zhang X H,Lee C S. A stable high performance Li-S battery with a polysulfide ion blocking layer[J]. Journal of Materials Chemistry A ,2014,2(16):5602-5605. [71] Chung S H,Manthiram A. A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries[J]. Chemical Communications ,2014,50(32):4184-4187. [72] Nan C Y,Lin Z,Liao H G, et al. Durable carbon-coated Li 2 S core-shell spheres for high performance lithium/sulfur cells[J]. Journal of the American Chemical Society ,2014,136(12):4659-4663. [73] Bernhard R,Meini S,Gasteiger H A. On-line electrochemical mass spectrometry investigations on the gassing behavior of Li 4 Ti 5 O 12 electrodes and its origins[J]. Journal of the Electrochemical Society ,2014,161(4):A497-A505. [74] Dubeshter T,Sinha P K,Sakars A, et al. Measurement of tortuosity and porosity of porous battery electrodes[J]. Journal of the Electrochemical Society ,2014,161(4):A599-A605. [75] Ganter M J,Landi B J,Babbitt C W, et al. Cathode refunctionalization as a lithium ion battery recycling alternative[J]. Journal of Power Sources ,2014,256:274-280. [76] Gowda S R,Gallagher K G,Croy J R, et al. Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells[J]. Physical Chemistry Chemical Physics ,2014,16(15):6898-6902. [77] Greco A,Cao D P,Jiang X, et al. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes[J]. Journal of Power Sources ,2014,257:344-355. [78] Lepage D,Sobha F,Kuss C, et al. Delithiation kinetics study of carbon coated and carbon free LiFePO 4 [J]. Journal of Power Sources ,2014,256:61-65. [79] Petzl M,Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries[J]. Journal of Power Sources ,2014,254:80-87. [80] Samba A,Omar N,Gualous H, et al. Development of an advanced two-dimensional thermal model for large size lithium-ion pouch cells[J]. Electrochimica Acta ,2014,117:246-254. [81] Schmalstieg J,Kabitz S,Ecker M, et al. A holistic aging model for Li(NiMnCo)O 2 based 18650 lithium-ion batteries[J]. Journal of Power Sources ,2014,257:325-334. [82] Bobrikov I A,Balagurov A M,Hu C W, et al. Structural evolution in LiFePO 4 -based battery materials:In-situ and ex-situ time-of-flight neutron diffraction study[J]. Journal of Power Sources ,2014,258:356-364. [83] Eastwood D S,Bradley R S,Tariq F, et al. The application of phase contrast X-ray techniques for imaging Li-ion battery electrodes[J]. Nuclear Instruments & Methods in Physics Research Section B : Beam Interactions with Materials and Atoms ,2014,324:118-123. [84] Ebner M,Chung D W,Garcia R E, et al. Tortuosity anisotropy in lithium-ion battery electrodes[J]. Advanced Energy Materials ,2014,doi:10.1002/aenm.201301278. [85] Hayamizu K,Aihara Y,Machida N. Anomalous lithium ion migration in the solid electrolyte (Li 2 S) 7 (P 2 S 5 ) 3 ; fast ion transfer at short time intervals studied by PGSE NMR spectroscopy[J]. Solid State Ionics ,2014,259:59-64. [86] Takai S,Yoshioka K,Iikura H, et al. Tracer diffusion coefficients of lithium ion in LiMn 2 O 4 measured by neutron radiography[J]. Solid State Ionics ,2014,256:93-96. [87] Gross T,Hess C. Raman diagnostics of LiCoO 2 electrodes for lithium-ion batteries[J]. Journal of Power Sources ,2014,256:220-225. [88] Dubarry M,Truchot C,Liaw B Y. Cell degradation in commercial LiFePO 4 cells with high-power and high-energy designs[J]. Journal of Power Sources ,2014,258:408-419. [89] Roberts M R,Madsen A,Nicklin C, et al. Direct observation of active material concentration gradients and crystallinity breakdown in LiFePO 4 electrodes during charge/discharge cycling of lithium batteries[J]. Journal of Physical Chemistry C ,2014,118(13):6548-6557. [90] Cai W W,Zhang Y F,Li J, et al. Single-ion polymer electrolyte membranes enable lithiumion batteries with a broad operating temperature range[J]. ChemSusChem ,2014,7(4):1063-1067. [91] Orvananos B,Ferguson T R,Yu H C, et al. Particle-level modeling of the charge-discharge behavior of nanoparticulate phase-separating li-ion battery electrodes[J]. Journal of the Electrochemical Society ,2014,161(4):A535-A546. [92] Bai P,Bazant M Z. Charge transfer kinetics at the solid-solid interface in porous electrodes[J]. Nature Communications ,2014,doi:10.1038/ncomms4585. [93] Iddir H,Benedek R. First-principles analysis of phase stability in layered-layered composite cathodes for lithium-ion batteries[J]. Chemistry of Materials ,2014,26(7):2407-2413. [94] Meier K,Laino T,Curioni A. Solid-state electrolytes:Revealing the mechanisms of li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. Journal of Physical Chemistry C ,2014,118(13):6668-6679. [95] Li X B,Chen Y J,Nguyen C C, et al. Stability of inactive components of cathode laminates for lithium ion batteries at high potential[J]. Journal of the Electrochemical Society ,2014,161(4):A576-A582. [96] Qu W G,Dorjpalam E,Rajagopalan R, et al. Role of additives in formation of solid-electrolyte interfaces on carbon electrodes and their effect on highvoltage stability[J]. ChemSusChem ,2014,7(4):1162-1169. [97] Stournara M E,Qi Y,Shenoy V B. From ab initio calculations to multiscale design of Si/C core-shell particles for Li-ion anodes[J]. Nano Letters ,2014,14(4):2140-2149. [98] Vitucci F M,Palumbo O,Paolone A, et al. Dynamics of Mn 3+ in off-stoichiometric LiMn 1.5 Ni 0.5 O 4 [J]. Journal of Alloys and Compounds ,2014,604:83-86. [99] Yu H C,Ling C,Bhattacharya J, et al. Designing the next generation high capacity battery electrodes[J]. Energy & Environmental Science ,2014,7(5):1760-1768. [100] Chiu K F,Su S H,Leu H J, et al. Application of lithiated perfluorosulfonate ionomer binders to enhance high rate capability in LiMn 2 O 4 cathodes for lithium ion batteries[J]. Electrochimica Acta ,2014,117:134-138. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[7] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[8] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[9] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[12] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[13] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[14] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[15] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||