Energy Storage Science and Technology ›› 2013, Vol. 2 ›› Issue (3): 237-249.doi: 10.3969/j.issn.2095-4239.2013.03.009
• Research highlight • Previous Articles Next Articles
TANG Daichun, DONG Jinping, SUN Yang, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie
Received:
2013-04-16
Online:
2013-06-19
Published:
2013-06-19
CLC Number:
TANG Daichun, DONG Jinping, SUN Yang, LIN Mingxiang, XU Kaiqi, YAN Yong, CHEN Bin, WANG Hao, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries(Feb. 1,2013 to Mar. 31,2013)[J]. Energy Storage Science and Technology, 2013, 2(3): 237-249.
[1] Sugiyama J,Mukai K,Nozaki H, et al . Antiferromagnetic spin structure and lithium ion diffusion in Li 2 MnO 3 probed by μ + SR[J]. Physical Review B ,2013,87(2):66-76. [2] Cook J B,Kim C,Xu L P, et al . The effect of Al substitution on the chemical and electrochemical phase stability of orthorhombic LiMnO 2 [J]. Journal of the Electrochemical Society ,2013,160(1):A46-A52. [3] Tavakoli A H,Kondo H,Ukyo Y, et al . Stabilizing effect of Mg on the energetics of the Li(Ni,Co,Al)O 2 cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A302-A305. [4] Noh M,Cho J.Optimized synthetic conditions of LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode materials for high rate lithium batteries via co-precipitation method[J]. Journal of the Electrochemical Society ,2013,160(1):A105-A111. [5] Noh H J,Myung S T,Jung H G, et al . Formation of a continuous solid-solution particle and its application to rechargeable lithium batteries[J]. Advanced Functional Materials ,2013,23(8):1028-1036. [6] Jung Y S,Lu P,Cavanagh A S, et al . Unexpected improved performance of ALD coated LiCoO 2 /graphite Li-ion batteries[J]. Advanced Energy Materials ,2013,3(2):213-219. [7] Fu F,Xu G L,Wang Q, et al . Synthesis of single crystalline hexagonal nanobricks of LiNi 1/3 Co 1/3 Mn 1/3 O 2 with high percentage of exposed {010} active facets as high rate performance cathode material for lithium-ion battery[J]. Journal of Materials Chemistry A ,2013,1(12):3860-3864. [8] Nam K W,Bak S M,Hu E Y, et al . Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries[J]. Advanced Functional Materials ,2013,23(8):1047-1063. [9] Yabuuchi N,Yamamoto K,Yoshii K, et al . Structural and electrochemical characterizations on Li 2 MnO 3 -LiCoO 2 -LiCrO 2 system as positive electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2013,160(1):A39-A45. [10] Kim D,Sandi G,Croy J R, et al . Composite 'layered-layered-spinel' cathode structures for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(1):A31-A38. [11] Amalraj F,Talianker M,Markovsky B, et al . Study of the lithium-rich integrated compound x Li(2)MnO(3) center dot (1- x )LiMO 2 ( x around 0.5; M = Mn,Ni,Co; 2∶2∶1)and its electrochemical activity as positive electrode in lithium cells[J]. Journal of the Electrochemical Society ,2013,160(2):A324-A337. [12] Jafta C J,Ozoemena K I,Mathe M K, et al . Synthesis,characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material for lithium ion battery[J]. Electrochimica Acta ,2012,85(15):411-422. [13] Jiang Y,Yang Z,Luo W., et al . Hollow 0.3Li(2)MnO(3)center dot 0.7LiNi(0.5)Mn(0.5)O(2) microspheres as a high-performance cathode material for lithium-ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(8):2954-2960. [14] Gu M,Belharouak I,Zheng J M, et al . Formation of the spinel phase in the layered composite cathode used in Li-ion batteries[J]. Acs Nano ,2013,7(1):760-767. [15] Shi S J,Tu J P,Tang Y Y, et al . Enhanced cycling stability of Li (Li 0.2 Mn 0.54 Ni 0.13 Co 0.13 )O 2 by surface modification of MgO with melting impregnation method[J]. Electrochimica Acta ,2013,88:671-679. [16] Wang D P,Belharouak I,Zhou G W, et al . Nanoarchitecture multi-structural cathode materials for high capacity lithium batteries[J]. Advanced Functional Materials ,2013,23(8):1070-1075. [17] Chemelewski K R,Shin D W,Li W, et al . Octahedral and truncated high-voltage spinel cathodes:The role of morphology and surface planes in electrochemical properties[J]. Journal of Materials Chemistry A ,2013,1(10):3347-3354. [18] Fang X,Ge M Y,Rong J P, et al . Graphene-oxide-coated LiNi 0.5 Mn 1.5 O 4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life[J]. Journal of Materials Chemistry A ,2013,1(12):4083-4088. [19] Schroeder M,Glatthaar S,Gesswein H, et al . Post-doping via spray-drying:A novel sol-gel process for the batch synthesis of doped LiNi 0.5 Mn 1.5 O 4 spinel material[J]. Journal of Materials Science ,2013,48(9):3404-3414. [20] Lee E S,Manthiram A. Influence of doping on the cation ordering and charge-discharge behavior of LiMn 1.5 Ni 0.5- x M x O 4 (M = Cr,Fe,Co,and Ga) spinels between 5.0 and 2.0 V[J]. Journal of Materials Chemistry A ,2013,1(9):3118-3126. [21] Cuisinier M,Dupre N,Martin J F, et al . Evolution of the LiFePO 4 positive electrode interface along cycling monitored by MAS NMR[J]. Journal of Power Sources ,2013,224:50-58. [22] Omenya F,Chernova N A,Zhang R B, et al . Why substitution enhances the reactivity of LiFePO 4 [J]. Chemistry of Materials ,2013, 25(1):85-89. [23] Gueguen A,Castro L,Dedryvere R, et al . The electrode/electrolyte reactivity of LiFe 0.33 Mn 0.67 PO 4 compared to LiFePO 4 [J]. Journal of the Electrochemical Society ,2013,160(2):A387-A393. [24] Wang J J,Yang J L,Zhang Y, et al . Interaction of carbon coating on LiFePO 4 :A local visualization study of the influence of impurity phases[J]. Advanced Functional Materials ,2013,23(7):806-814. [25] Rasanen S,Karppinen M. Thermogravimetric study of water-based LiFePO 4 composite electrode powders[J]. Thermochimica Acta ,2012,547:126-129. [26] Choi I,Lee M J,Oh S M, et al . Fading mechanisms of carbon-coated and disproportionated Si/SiO x negative electrode (Si/SiO x /C) in Li-ion secondary batteries:Dynamics and component analysis by TEM[J]. Electrochimica Acta ,2012,85(15):369-376. [27] Dogan F,Joyce C,Vaughey J T. Formation of silicon local environments upon annealing for silicon anodes:A Si-29 solid state NMR study[J]. Journal of the Electrochemical Society ,2013,160(2):A312-A319. [28] Kang H K,Lee S R,Cho W I, et al . Effect of multilayer structure on cyclic performance of Si/Fe anode electrode in lithium-ion secondary batteries[J]. Physical Chemistry Chemical Physics ,2013,15(5):1569-1577. [29] Park O,Lee J I,Chun M, et al . High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer[J]. Rsc Advances ,2013,3(8):2538-2542. [30] Piper D M,Yersak T A,Lee S H. Effect of compressive stress on electrochemical performance of silicon anodes[J]. Journal of the Electrochemical Society ,2013,160(1):A77-A81. [31] Sethuraman V A,Srinivasan V,Newman J. Analysis of electrochemical lithiation and delithiation kinetics in silicon[J]. Journal of the Electrochemical Society ,2013,160(2):A394-A403. [32] McDowell M T,Lee S W ,Harris J T, et al . In situ TEM of two-phase lithiation of amorphous silicon nanospheres[J]. Nano Letters ,2013,13(2):758-764. [33] Park Y,Choi N S,Park S, et al . Si-encapsulating hollow carbon electrodes via electroless etching for lithium-ion batteries[J]. Advanced Energy Materials ,2013,3(2):206-212. [34] Deng J W,Ji H X,Yan C L, et al . Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance[J]. Angewandte Chemie-International Edition ,2013,52(8):2326-2330. [35] Wang F,Xu S H,Zhu S S, et al . Ni-coated Si microchannel plate electrodes in three-dimensional lithium-ion battery anodes[J]. Electrochimica Acta ,2013,87:250-255. [36] Zhu J,Gladden C,Liu N A, et al . Nanoporous silicon networks as anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(2):440-443. [37] Liu W W,Yan X B,Xue Q J. Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors[J]. Journal of Materials Chemistry C ,2013,1(7):1413-1422. [38] Yang A K,Xue Y,Zhang Y, et al . A simple one-pot synthesis of graphene nanosheet/SnO 2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine[J]. Journal of Materials Chemistry B ,2013,1(13):1804-1811. [39] Xiong H,Yildirim H,Podsiadlo P, et al . Compositional tuning of structural stability of lithiated cubic titania via a vacancy-filling mechanism under high pressure[J]. Physical Review Letters ,2013,110(7). doi:10.1103/PhysRevLett.110.078304. [40] Zhu G N,Chen L,Wang Y G, et al . Binary Li 4 Ti 5 O 12 -Li 2 Ti 3 O 7 nanocomposite as an anode material for Li-ion batteries[J]. Advanced Functional Materials ,2013,23(5):640-647. [41] Suzuki S,Miyayama M. Electrochemical intercalation of lithium into thin film of stacked tetratitanate nanosheets fabricated by electrophoretic deposition[J]. Journal of the Electrochemical Society ,2013,160(2):A293-A296. [42] Yan C L,Xi W,Si W P, et al . Highly conductive and strain-released hybrid multilayer Ge/Ti nanomembranes with enhanced lithium-ion- storage capability[J]. Advanced Materials ,2013,25(4):539-544. [43] Darwiche A,Marino C,Sougrati M T, et al . Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems:An unexpected electrochemical mechanism[J]. Journal of the American Chemical Society ,2012,134(51):20805-20811. [44] Feng B,Xie J,Cao G S, et al . Facile synthesis of ultrafine CoSn 2 nanocrystals anchored on graphene by one-pot route and the improved electrochemical Li-storage properties[J]. New Journal of Chemistry ,2013,37(2):474-480. [45] Gu Y,Wu F D,Wang Y. Confined volume change in Sn-Co-C ternary tube-in-tube composites for high-capacity and long-life lithium storage[J]. Advanced Functional Materials ,2013,23(7):893-899. [46] Wang D N,Li X F,Yang J L , et al . Hierarchical nanostructured core-shell Sn@C nanoparticles embedded in graphene nanosheets:Spectroscopic view and their application in lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2013,15(10):3535-3542. [47] Zhou X Y,Zou Y L,Yang J, et al . Layer by layer synthesis of Sn-Co-C microcomposites and their application in lithium ion batteries[J]. Journal of Central South University ,2013,20(2):326-331. [48] Liu Z C,Fu W J,Payzant E A, et al . Anomalous high ionic conductivity of nanoporous β -Li 3 PS 4 [J]. Journal of the American Chemical Society ,2013,135(3):975-978. [49] Machida N,Kashiwagi J,Naito M, et al . Electrochemical properties of all-solid-state batteries with ZrO 2 -coated LiNi 1/3 Mn 1/3 Co 1/3 O 2 as cathode materials[J]. Solid State Ionics ,2012,225:354-358. [50] Basrur V R,Guo J C,Wang C S, et al . Synergistic gelation of silica nanoparticles and a sorbitol-based molecular gelator to yield highly-conductive free-standing gel electrolytes[J]. Acs Applied Materials & Interfaces ,2013,5(2):262-267. [51] Chinnam P R,Wunder S L. Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li + ion transference number[J]. Journal of Materials Chemistry A ,2013,1(5):1731-1739. [52] Wilken S,Johansson P,Jacobsson P. Infrared spectroscopy of instantaneous decomposition products of LiPF 6 -based lithium battery electrolytes[J]. Solid State Ionics ,2012,225:608-610. [53] Kramer E,Schedlbauer T,Hoffmann B, et al . Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A356-A360. [54] Abouimrane A,Odom S A,Tavassol H, et al . 3-Hexylthiophene as a stabilizing additive for high voltage cathodes in lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A268-A271. [55] Tan S,Zhang Z R,Li Y X, et al . Tris(hexafluoro- iso-propyl)phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li 0.2 Mn 0.56 Ni 0.16 Co 0.08 ]O 2 cathode material[J]. Journal of the Electrochemical Society ,2013,160(2): A285-A292. [56] Ochida M,Doi T,Domi Y, et al . Effects of electrolyte additives on the suppression of Mn deposition on edge plane graphite for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A410-A413. [57] Petibon R,Aiken C P,Sinha N N, et al . Study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells[J]. Journal of the Electrochemical Society ,2013,160(1):A117-A124. [58] Srour H,Rouault H,Santini C. Imidazolium based ionic liquid electrolytes for Li-ion secondary batteries based on graphite and LiFePO 4 [J]. Journal of the Electrochemical Society ,2013,160(1):A66-A69. [59] Zheng J M,Xiao J,Xu W, et al . Surface and structural stabilities of carbon additives in high voltage lithium ion batteries[J]. Journal of Power Sources ,2013,227:211-217. [60] Ping P,Xia X,Wang Q S, et al . The effect of trimethoxyboroxine on some positive electrodes for Li-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(3):A426-A429. [61] Zuo X X,Fan C J,Liu J S, et al . Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi 0.5 Co 0.2 Mn 0.3 O 2 / graphite cells[J]. Journal of Power Sources ,2013,229:308-312. [62] Black R,Lee J H,Adams B, et al . The role of catalysts and peroxide oxidation in lithium-oxygen batteries[J]. Angewandte Chemie- International Edition ,2013,52(1):392-396. [63] Bryantsev V S,Uddin J,Giordani V, et al . The identification of stable solvents for nonaqueous rechargeable Li-air batteries[J]. Journal of the Electrochemical Society ,2013,160(1): A160-A171. [64] Ke F S,Solomon B C,Ma SG, et al . Metal-carbon nanocomposites as the oxygen electrode for rechargeable lithium-air batteries[J]. Electrochimica Acta ,2012,85(15):444-449. [65] Park H W,Lee D U,Nazar L F, et al . Oxygen reduction reaction using MnO 2 nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O 2 battery applications[J]. Journal of the Electrochemical Society ,2013,160(2):A344-A350. [66] Hummelshoj J S,Luntz A C, Norskov J K. Theoretical evidence for low kinetic overpotentials in Li-O 2 electrochemistry[J]. Journal of Chemical Physics ,2013,138(3):034703. [67] Younesi R,Hahlin M,Bjorefors F, et al . Li-O 2 battery degradation by lithium peroxide (Li 2 O 2 ):A model study[J]. Chemistry of Materials ,2013,25(1):77-84. [68] Trahey L,Karan N K,Chan M K Y, et al . Synthesis,characterization and structural modeling of high-capacity,dual functioning MnO 2 electrode/electrocatalysts for Li-O 2 cells[J]. Advanced Energy Materials ,2013,3(1):75-84. [69] Bryantsev V S. Predicting the stability of aprotic solvents in Li-air batteries: pK a calculations of aliphatic C-H acids in dimethyl sulfoxide[J]. Chemical Physics Letters ,2013,558:42-47. [70] Tsiouvaras N,Meini S,Buchberger I, et al . A novel on-line mass spectrometer design for the study of multiple charging cycles of a Li-O 2 battery[J]. Journal of the Electrochemical Society ,2013,160(3):A471-A477. [71] Guo J C,Yang Z C,Yu Y C, et al . Lithium-sulfur battery cathode enabled by lithium-nitrile interaction[J]. Journal of the American Chemical Society ,2013,135(2):763-767. [72] Yang Z C,Guo J C,Das S K, et al . In situ synthesis of lithium sulfide-carbon composites as cathode materials for rechargeable lithium batteries[J]. Journal of Materials Chemistry A ,2013,1(4):1433-1440. [73] Su Y S,Manthiram A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer[J]. Nature Communications ,2012,3. doi:10.1038/ncomms2163. [74] Kim J,Lee D J,Jung H G, et al . An advanced lithium-sulfur battery[J]. Advanced Functional Materials ,2013,23(8):1076-1080. [75] Zhu X J,Ong C S,Xu X X, et al . Direct observation of lithium-ion transport under an electrical field in Li x CoO 2 nanograins[J]. Scientific Reports ,2013,3. doi:10.1038/srep01084. [76] Andre D,Appel C,Soczka-Guth T, et al . Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources ,2013,224:20-27. [77] Nieto N,Diaz L,Gastelurrutia J, et al . Thermal modeling of large format lithium-ion cells[J]. Journal of the Electrochemical Society ,2013,160(2):A212-A217. [78] Svens P,Kjell M H,Tengstedt C, et al . Li-ion pouch cells for vehicle applications-studies of water transmission and packing materials[J]. Energies ,2013,6(1):400-410. [79] Takahara H,Miyauchi H,Tabuchi M, et al . Elemental distribution analysis of LiFePO 4 /graphite cells studied with glow discharge optical emission spectroscopy (GD-OES)[J]. Journal of the Electrochemical Society ,2013,160(2):A272-A278. [80] Waag W,Kabitz S,Sauer D U. Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy ,2013,102:885-897. [81] Jin G,Matthews D E,Zhou Z B. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft[J]. Reliability Engineering & System Safety ,2013,113:7-20. [82] Kircheva N,Genies S,Chabrol C, et al . Evaluation of acoustic emission as a suitable tool for aging characterization of LiAl/LiMnO 2 cell[J]. Electrochimica Acta ,2013,88:488-494. [83] Yi J,Kim U S,Shin C B, et al . Three-dimensional thermal modeling of a lithium-ion battery considering the combined effects of the electrical and thermal contact resistances between current collecting tab and lead wire[J]. Journal of the Electrochemical Society ,2013,160(3):A437-A443. [84] Xiong R,He H W,Sun F C, et al . Model-based state of charge and peak power capability joint estimation of lithium-ion battery in plug-in hybrid electric vehicles[J]. Journal of Power Sources ,2013,229:159-169. [85] Dubarry M,Truchot C,Liaw B Y, et al . Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications III:Effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electrochemical Society ,2013,160(1):A191-A199. [86] Kim J H,Woo S C,Park M S, et al . Capacity fading mechanism of LiFePO 4 -based lithium secondary batteries for stationary energy storage[J]. Journal of Power Sources ,2013,229:190-197. [87] Pinson M B,Bazant M Z. Theory of SEI formation in rechargeable batteries:Capacity fade,accelerated aging and lifetime prediction[J]. Journal of the Electrochemical Society ,2013,160(2):A243-A250. [88] Narayanrao R,Joglekar M M,Inguva S. A phenomenological degradation model for cyclic aging of lithium ion cell materials[J]. Journal of the Electrochemical Society ,2013,160(1):A125-A137. [89] Smith A J,Sinha N N,Dahn J R. Narrow range cycling and storage of commercial Li-ion cells[J]. Journal of the Electrochemical Society ,2013,160(2):A235-A242. [90] Burkhardt S E,Bois J,Tarascon J M, et al . Li-carboxylate anode structure-property relationships from molecular modeling[J]. Chemistry of Materials ,2013, 25(2):132-141. [91] Chen J H,He L M,Wang R L. The stability of redox shuttles for overcharge protection in lithium-ion cells:Studied by a computational model and molecular orbital analysis[J]. Journal of the Electrochemical Society ,2013,160(1):A155-A159. [92] Longo R C,Xiong K,Cho K. Multicomponent silicate cathode materials for rechargeable Li-ion batteries:An Ab initio study[J]. Journal of the Electrochemical Society ,2013,160(1):A60-A65. [93] Moriwake H,Kuwabara A,Fisher C A J, et al . First-principles calculations of lithium-ion migration at a coherent grain boundary in a cathode material LiCoO 2 [J]. Advanced Materials ,2013,25(4):618-622. [94] Okamoto Y. Ab initio calculations of thermal decomposition mechanism of LiPF 6 -based electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2013,160(2):A404-A409. [95] Kirklin S,Meredig B,Wolverton C. High-throughput computational screening of new Li-ion battery anode materials[J]. Advanced Energy Materials ,2013,3(2):252-262. [96] Becker D,Cherkashinin G,Hausbrand R, et al . XPS study of diethyl carbonate adsorption on LiCoO 2 thin films[J]. Solid State Ionics ,2013,230:83-85. [97] Deng J,Wagner G J,Muller R P. Phase field modeling of solid electrolyte interface formation in lithium ion batteries[J]. Journal of the Electrochemical Society ,2013,160(3):A487-A496. [98] Song Y C,Shao X J,Guo Z S, et al . Role of material properties and mechanical constraint on stress-assisted diffusion in plate electrodes of lithium ion batteries[J]. Journal of Physics D:Applied Physics ,2013,46(10):105202. [99] Awarke A,Pischinger S,Ogrzewalla J. Pseudo 3D modeling and analysis of the SEI growth distribution in large format Li-ion polymer pouch cells[J]. Journal of the Electrochemical Society ,2013,160(1):A172-A181. [100] Cannarella J,Arnold C B. Ion transport restriction in mechanically strained separator membranes[J]. Journal of Power Sources ,2013,226:149-155. |
[1] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[5] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[8] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[11] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[12] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
[13] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[14] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[15] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||