[1] TARASCON J M, ARMAND M. Building better batteries[J]. Nature, 2008, 451:652-657.
[2] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society, 2013, 1359(4):1167-1176.
[3] LI J, DANIEL C, WOOD D L. Materials processing for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196:2452-2460.
[4] WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Review, 2004, 104:4271-4301.
[5] PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126:2047-2051.
[6] PELED E. Film forming reaction at the lithium/electrolyte interface[J]. Journal of Power Sources, 1983, 9:253-266.
[7] CROWTHER O, WEST A C. Effect of electrolyte composition on lithium dendrite growth[J]. Journal of the Electrochemical Society, 2008, 155:A806.
[8] FONG R, SACKEN U, DAHN J R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells[J]. Journal of the Electrochemical Society, 1990, 137:2009-2013.
[9] GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22:587-603.
[10] YAN J, ZHANG Y C, SU X G, et al. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55:1785-1794.
[11] WANG A P, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. Computational Materials, 2018, 4:15.
[12] STEINHAUER M, DIEMANT T, HEIM C, et al. Insights into solid electrolyte interphase formation on alternative anode materials in lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2017, 47:249-259.
[13] NANDASRI M I, CAMACHO-FORERO L E, SCHWARZ A M, et al. In situ chemical imaging of solid-electrolyte interphase layer evolution in Li-S batteries[J]. Chemistry of Materials, 2017, 29(11):4728-4737.
[14] YAZAMI R, REVNIER Y F. Mechanism of self-discharge in graphite-lithium anode[J]. Electrochimica Acta, 2012, 47:1217-1223.
[15] YAZAMI R. Surface chemistry and lithium storage capability of the graphite passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4)[J]. Journal of Physical Chemistry C, 2014, 118(14):7363-7368.
[16] PELED E, TOWA D B, MERSON A, et al. Microphase structure of SEI on HOPG[J]. Journal of New Materials for Electrochemical Systems, 2000, 3:321-328.
[17] LU P, LI C, SCHNEIDER E W, HARRIS S J. Chemistry, impedance, and morphology evolution in solid electrolyte interphase films during formation in lithium ion batteries[J]. Journal of Physical Chemistry C, 2014, 118:896-903.
[18] LEUNG K, BUDZEN J L. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes[J]. Physical Chemistry Chemical Physics, 2010, 12:6583-6586.
[19] CHEN Y L, HU Y, SHEN Z, et al. Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries[J]. Journal of Power Sources, 2017, 342:467-475.
[20] BOYER M J, HWANG G S. Theoretical evaluation of ethylene carbonate anion transport and its impact on solid electrolyte interphase formation[J]. Electrochimica Acta, 2018, 266:326-331.
[21] SHI P C, LINA M, ZHENG H, et al. Effect of propylene carbonate-Li+ solvation structures on graphite exfoliation and its application in Li-ion batteries[J]. Electrochimica Acta, 2017, 247:12-18.
[22] ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(8/9):1636-1640.
[23] SHAROVA V, MORETTI A, DIEMANT T, et al. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries[J]. Journal of Power Sources, 2018, 375:43-52.
[24] WANG K, XING L D, ZHI H Z, et al. High stability graphite/electrolyte interface created by a novel electrolyte additive:A theoretical and experimental study[J]. Electrochimica Acta, 2018, 262:226-232.
[25] AN S J, LI J L, DANIEL C, et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105:52-76.
[26] RODRIGUES M T F, SAYED F N, GULLAPALI H, et al. High-temperature solid electrolyte interphases (SEI) in graphite electrodes[J]. 2018, 381:107-115.
[27] PRITZL D, SOLCHENBACH S, WETJEN M, et al. Analysis of vinylene carbonate (VC) as additive in graphite/LiNi0.5Mn1.5O4 cells[J]. Journal of the Electrochemical Society, 2017, 164(12):A2625-A2635. |