Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (11): 3487-3496.doi: 10.19799/j.cnki.2095-4239.2022.0332
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jie CHEN(), Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG()
Received:
2022-06-17
Revised:
2022-07-07
Online:
2022-11-05
Published:
2022-11-09
Contact:
Wuxing ZHANG
E-mail:836326106@qq.com;zhangwx@hust.edu.cn
CLC Number:
Jie CHEN, Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG. Research progress of pre-sodiation technologies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496.
1 | DOSE W M, JOHNSON C S. Cathode pre-lithiation/sodiation for next-generation batteries[J]. Current Opinion in Electrochemistry, 2022, 31: doi: 10.1016/j.coelec. 2021. 100827. |
2 | WINTER M, BRODD R J. What are batteries, fuel cells, and supercapacitors?[J]. ChemInform, 2004, 35(50): doi: 10.1002/chin. 200450265. |
3 | GREY C P, HALL D S. Prospects for lithium-ion batteries and beyond—a 2030 vision[J]. Nature Communications, 2020, 11: 6279. |
4 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
5 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
6 | YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
7 | BURKE A F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the IEEE, 2007, 95(4): 806-820. |
8 | KUBOTA K, KOMABA S. Review—practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2.0151514jesA2538-A2550. |
9 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
10 | KIM H, KIM H, DING Z, et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/aenm.201600943. |
11 | LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
12 | TIAN Y S, ZENG G B, RUTT A, et al. Promises and challenges of next-generation "beyond Li-ion" batteries for electric vehicles and grid decarbonization[J]. Chemical Reviews, 2021, 121(3): 1623-1669. |
13 | BELTROP K, BEUKER S, HECKMANN A, et al. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries[J]. Energy & Environmental Science, 2017, 10(10): 2090-2094. |
14 | MARTIN G, RENTSCH L, HÖCK M, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179. |
15 | HASA I, MARIYAPPAN S, SAUREL D, et al. Challenges of today for Na-based batteries of the future: From materials to cell metrics[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020. 228872. |
16 | WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912. |
17 | NI Q, BAI Y, WU F, et al. Polyanion-type electrode materials for sodium-ion batteries[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600275. |
18 | WAN M, ZENG R, MENG J T, et al. Post-synthetic and in situ vacancy repairing of iron hexacyanoferrate toward highly stable cathodes for sodium-ion batteries[J]. Nano-Micro Letters, 2021, 14(1): 9. |
19 | YANG L X, LIU Q, WAN M, et al. Surface passivation of NaxFe[Fe(CN)6]cathode to improve its electrochemical kinetics and stability in sodium-ion batteries[J]. Journal of Power Sources, 2020, 448: doi: 10.1016/j.jpowsour.2019. 227421. |
20 | HONG K L, QIE L, ZENG R, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): doi: 10.1039/c4ta02068e. |
21 | DUAN J, ZHANG W, WU C, et al. Self-wrapped Sb/C nanocomposite as anode material for High-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487. |
22 | CHEN K Y, ZHANG W X, XUE L H, et al. Mechanism of capacity fade in sodium storage and the strategies of improvement for FeS 2 anode[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1536-1541. |
23 | LIU Y H, LIU Q Z, JIAN C, et al. Red-phosphorus-impregnated carbon nanofibers for sodium-ion batteries and liquefaction of red phosphorus[J]. Nature Communications, 2020, 11: 2520. |
24 | PARK Y, SHIN D S, WOO S H, et al. Sodium terephthalate as an organic anode material for sodium ion batteries[J]. Advanced Materials, 2012, 24(26): 3562-3567. |
25 | PLACKE T, HECKMANN A, SCHMUCH R, et al. Perspective on performance, cost, and technical challenges for practical dual-ion batteries[J]. Joule, 2018, 2(12): 2528-2550. |
26 | MA R F, FAN L, CHEN S H, et al. Offset initial sodium loss to improve coulombic efficiency and stability of sodium dual-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 15751-15759. |
27 | CEKIC-LASKOVIC I, VON ASPERN N, IMHOLT L, et al. Synergistic effect of blended components in nonaqueous electrolytes for lithium ion batteries[J]. Topics in Current Chemistry, 2017, 375(2): 37. |
28 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
29 | MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm. 201700463. |
30 | MOGENSEN R, BRANDELL D, YOUNESI R. Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries[J]. ACS Energy Letters, 2016, 1(6): 1173-1178. |
31 | BOMMIER C, JI X L. Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes[J]. Small, 2018, 14(16): doi: 10.1002/smll.201703576. |
32 | TAKENAKA N, SAKAI H, SUZUKI Y, et al. A computational chemical insight into microscopic additive effect on solid electrolyte interphase film formation in sodium-ion batteries: Suppression of unstable film growth by intact fluoroethylene carbonate[J]. The Journal of Physical Chemistry C, 2015, 119(32): 18046-18055. |
33 | DOSE W M, VILLA C, HU X B, et al. Beneficial effect of Li5FeO4 lithium source for Li-ion batteries with a layered NMC cathode and Si anode[J]. Journal of the Electrochemical Society, 2020, 167(16): doi: 10.1149/1945-7111/abd1ef. |
34 | WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift Für Physikalische Chemie, 2009, 223(10/11): 1395-1406. |
35 | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. |
36 | IRISARRI E, PONROUCH A, PALACIN M R. Review—Hard carbon negative electrode materials for sodium-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): doi: 10.1149/2. 0091514jes. |
37 | XIE B X, ZUO P J, WANG L G, et al. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture[J]. Nano Energy, 2019, 61: 201-210. |
38 | ZHANG N, LIU Q, CHEN W L, et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. Journal of Power Sources, 2018, 378: 331-337. |
39 | MORTEMARD DE BOISSE B, CARLIER D, GUIGNARD M, et al. P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process[J]. Inorganic Chemistry, 2014, 53(20): 11197-11205. |
40 | DENG J Q, LUO W B, CHOU S L, et al. Sodium-ion batteries: From academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): doi: 10.1002/aenm.201701428. |
41 | SINGH G, ACEBEDO B, CABANAS M C, et al. An approach to overcome first cycle irreversible capacity in P2-Na2/3[Fe1/2Mn1/2]O2[J]. Electrochemistry Communications, 2013, 37: 61-63. |
42 | DOSE W M, KIM S, LIU Q, et al. Dual functionality of over-lithiated NMC for high energy silicon-based lithium-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(21): 12818-12829. |
43 | HOLTSTIEGE F, BÄRMANN P, NÖLLE R, et al. Pre-lithiation strategies for rechargeable energy storage technologies: Concepts, promises and challenges[J]. Batteries, 2018, 4(1): 4. |
44 | DEWAR D, GLUSHENKOV A M. Optimisation of sodium-based energy storage cells using pre-sodiation: A perspective on the emerging field[J]. Energy & Environmental Science, 2021, 14(3): 1380-1401. |
45 | ZHANG T Q, WANG R, HE B B, et al. Recent advances on pre-sodiation in sodium-ion capacitors: A mini review[J]. Electrochemistry Communications, 2021, 129: doi: 10.1016/j.elecom.2021. 107090. |
46 | KURATANI K, YAO M, SENOH H, et al. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon[J]. Electrochimica Acta, 2012, 76: 320-325. |
47 | WANG X H, QI L, WANG H Y. Commercial carbon molecular sieves as a na+-storage anode material in dual-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(14): doi: 10.1149/2. 0491714jes. |
48 | ZOU K Y, DENG W T, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm.202005581. |
49 | MARINARO M, WEINBERGER M, WOHLFAHRT-MEHRENS M. Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries[J]. Electrochimica Acta, 2016, 206: 99-107. |
50 | TANG J L, KYE D K, POL V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. Journal of Power Sources, 2018, 396: 476-482. |
51 | AIDA T, YAMADA K, MORITA M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode[J]. Electrochemical and Solid-State Letters, 2006, 9(12): doi: 10.1149/1. 2349495. |
52 | BUBLIL S, LEIFER N, NANDA R, et al. Alumina thin coat on pre-charged soft carbon anode reduces electrolyte breakdown and maintains sodiation sites active in Na-ion battery-Insights from NMR measurements[J]. Journal of Solid State Chemistry, 2021, 298: doi: 10.1016/j.jssc.2021. 122121. |
53 | YANG D F, SUN X M, LIM K, et al. Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors[J]. Journal of Power Sources, 2017, 362: 358-365. |
54 | CAO Y, ZHANG T Q, ZHONG X G, et al. A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials[J]. Chemical Communications, 2019, 55(98): 14761-14764. |
55 | LIU X X, TAN Y C, LIU T C, et al. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Advanced Functional Materials, 2019, 29(50): doi: 10.1002/adfm.201903795. |
56 | DE LA LLAVE E, BORGEL V, PARK K J, et al. Comparison between Na-ion and Li-ion cells: Understanding the critical role of the cathodes stability and the anodes pretreatment on the cells behavior[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1867-1875. |
57 | PAN X X, CHOJNACKA A, JEŻOWSKI P, et al. Na2S sacrificial cathodic material for high performance sodium-ion capacitors[J]. Electrochimica Acta, 2019, 318: 471-478. |
58 | XU Y K, SUN H Z, MA C S, et al. Pre-sodiation strategy for superior sodium storage batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39: 261-268. |
59 | MARTINEZ DE ILARDUYA J, OTAEGUI L, LÓPEZ DEL AMO J M, et al. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery[J]. Journal of Power Sources, 2017, 337: 197-203. |
60 | ZHANG Q, GAO X W, SHI Y, et al. Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan[J]. Energy Storage Materials, 2021, 39: 54-59. |
61 | PARK K, YU B C, GOODENOUGH J B. Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery[J]. Chemistry of Materials, 2015, 27(19): 6682-6688. |
62 | SHEN B L, ZHAN R M, DAI C L, et al. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells[J]. Journal of Colloid and Interface Science, 2019, 553: 524-529. |
63 | ZHANG R, TANG Z, SUN D, et al. Sodium citrate as a self-sacrificial sodium compensation additive for sodium-ion batteries[J]. Chemical Communications, 2021, 57(35): 4243-4246. |
64 | MARELLI E, MARINO C, BOLLI C, et al. How to overcome Na deficiency in full cell using P2-phase sodium cathode-A proof of concept study of Na-rhodizonate used as sodium reservoir[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019. 227617. |
65 | SATHIYA M, THOMAS J, BATUK D, et al. Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of Na-ion cells based on P2-NaxMO2 electrodes[J]. Chemistry of Materials, 2017, 29(14): 5948-5956. |
66 | ZOU K Y, SONG Z R, LIU H Q, et al. Electronic effect and regiochemistry of substitution in pre-sodiation chemistry[J]. The Journal of Physical Chemistry Letters, 2021, 12(49): 11968-11979. |
67 | MIRZA S, SONG Z H, ZHANG H Z, et al. A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material[J]. Journal of Materials Chemistry A, 2020, 8(44): 23368-23375. |
68 | ZHOU H T, WANG X H, DE CHEN. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries[J]. ChemSusChem, 2015, 8(16): 2737-2744. |
[1] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[2] | Shaojun NIU, Kai WU, Guobin ZHU, Yan WANG, Qunting QU, Honghe ZHENG. Studies on the swelling force during cycling of Si-based anodes in lithium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2989-2994. |
[3] | Kaiqiang GUO, Haiying CHE, Haoran ZHANG, Jianping LIAO, Huang ZHOU, Yunlong ZHANG, Hangda CHEN, Zhan SHEN, Haimei LIU, Zifeng MA. Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2980-2988. |
[4] | Shuya GONG, Yue WANG, Meng LI, Jingyi QIU, Hong WANG, Yuehua WEN, Bin XU. Research progress on TiNb2O7 anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2921-2932. |
[5] | Xin SHEN, Rui ZHANG, Chenzi ZHAO, Peng WU, Yutong ZHANG, Jundong ZHANG, Lizhen FAN, Quanbing LIU, Aibing CHEN, Qiang ZHANG. Recent advances in mechano-electrochemistry in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2781-2797. |
[6] | Jun ZHANG, Qi LI, Ying TAO, Quanhong YANG. Sieving carbons for sodium-ion batteries: Origin and progress [J]. Energy Storage Science and Technology, 2022, 11(9): 2825-2833. |
[7] | Binwei ZHANG, Zidong WEI, Shigang SUN. The recent progress and future opportunities of Na2S cathode for room temperature sodium sulfur batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2811-2824. |
[8] | Miaomiao CHEN, Qinjun SHAO, Jian CHEN. Preparation and application of Cr8O21 as cathode material for high specific energy lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 3011-3020. |
[9] | Jing ZHU, Yida WU, Junfeng HAO, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2022 to Jul. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(9): 3035-3050. |
[10] | Ziying CHEN, Xiang DING, Qingsong TONG, Junyan LI, Jingyu HUANG. Application progress of doping technology in Mn-based lithium rich oxide cathode materials [J]. Energy Storage Science and Technology, 2022, 11(8): 2681-2690. |
[11] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[12] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[13] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[14] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[15] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||