Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (12): 3759-3767.doi: 10.19799/j.cnki.2095-4239.2022.0420
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jian YAO1,2(), Zhaoyang LIU1,2, Hai WANG1,2, Jiadong WANG2, Xuanwen GAO1(), Jianzhong LI1, Zhaomeng LIU1, Yuchun ZHAI1, Wenbin LUO1
Received:
2022-07-27
Revised:
2022-08-08
Online:
2022-12-05
Published:
2022-12-29
Contact:
Xuanwen GAO
E-mail:2071640@stu.neu.edu.cn;gaoxuanwen@mail.neu.edu.cn
CLC Number:
Jian YAO, Zhaoyang LIU, Hai WANG, Jiadong WANG, Xuanwen GAO, Jianzhong LI, Zhaomeng LIU, Yuchun ZHAI, Wenbin LUO. Exploration of mixed positive and negative electrodes of spent lithium iron phosphate batteries[J]. Energy Storage Science and Technology, 2022, 11(12): 3759-3767.
1 | WHITTINGHAM M S. Lithium titanium disulfide cathodes[J]. Nature Energy, 2021, 6(2): 214. |
2 | GUO Y, LI F, ZHU H C, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
3 | GEORGI-MASCHLER T, FRIEDRICH B, WEYHE R, et al. Development of a recycling process for Li-ion batteries[J]. Journal of Power Sources, 2012, 207: 173-182. |
4 | HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 714-721. |
5 | 蒋梦迪, 张继予, 谢宏泽, 等. 酸浸法回收废锂电池中有价金属钴的研究进展[J]. 化工技术与开发, 2021, 50(3): 60-65. |
JIANG M D, ZHANG J Y, XIE H Z, et al. Research progress on recovery of valuable metal cobalt from waste lithium batteries by acid leaching[J]. Technology & Development of Chemical Industry, 2021, 50(3): 60-65. | |
6 | NITTA N, WU F X, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
7 | CHAGNES A, POSPIECH B. A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(7): 1191-1199. |
8 | YANG J, JIANG L X, LIU F Y, et al. Reductive acid leaching of valuable metals from spent lithium-ion batteries using hydrazine sulfate as reductant[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2256-2264. |
9 | 李之钦, 庄绪宁, 宋小龙, 等. 废锂离子电池正极材料的火法资源化技术研究进展[J]. 环境工程, 2021, 39(4): 115-122, 146. |
LI Z Q, ZHUANG X N, SONG X L, et al. Research progress on recovery of cathode material from spent lithium-ion batteries by pyrometallurgy[J]. Environmental Engineering, 2021, 39(4): 115-122, 146. | |
10 | 谭义勇. 浅析磷酸铁锂电池[J]. 信息记录材料, 2019, 20(6): 50-51. |
TAN Y Y. Analysis of lithium iron phosphate battery [J]. Information Recording Materials, 2019, 20(6): 50-51. | |
11 | 杨健, 秦吉涛, 李芳成, 等. 废旧锂离子电池的湿法回收研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3261-3278. |
YANG J, QIN J T, LI F C, et al. Review of hydrometallurgical processes for recycling spent lithium-ion batteries[J]. Journal of Central South University (Science and Technology), 2020, 51(12): 3261-3278. | |
12 | 杨健, 周媛, 张宗良, 等. 电场对废旧锂离子电池中有价金属浸出的影响研究(英文)[J/OL]. Transactions of Nonferrous Metals Society of China, 2022-05-29[2022-07-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZYSY20220512001&uniplatform=NZKPT&v=uMFR2gB616vVdmxt1SQGdmpzVkn7zJVIMF6hOW1ux5RrwRvhaZoyxal06btJpG5. |
YANG J, ZHOU Y, ZHANG Z L, et al. Effect of electric field on leaching of valuable metals from spent lithium-ion batteries (English)[J/OL]. Transactions of Nonferrous Metals Society of China, 2022-05-29[2022-07-01]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZYSY20220512001&uniplatform=NZKPT&v=uMFR2gB616vVdmxt1SQGdmpzVkn7zJVIMF6hOW1ux5RrwRvhaZoyxal06btJpG5. | |
13 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
14 | 赖延清, 杨健, 张刚, 等. 废旧三元锂离子电池正极材料的淀粉还原浸出工艺及其动力学[J]. 中国有色金属学报, 2019, 29(1): 153-160. |
LAI Y Q, YANG J, ZHANG G, et al. Optimization and kinetics of leaching valuable metals from cathode materials of spent ternary lithium ion batteries with starch as reducing agent[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(1): 153-160. | |
15 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. |
16 | LI X L, ZHANG J, SONG D W, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345: 78-84. |
17 | SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8): 4783-4790. |
18 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. |
19 | CHEN M Y, MA X T, CHEN B, et al. Recycling end-of-life electric vehicle lithium-ion batteries[J]. Joule, 2019, 3(11): 2622-2646. |
20 | ZHENG R J, ZHAO L, WANG W H, et al. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method[J]. RSC Advances, 2016, 6(49): 43613-43625. |
21 | LI H, XING S Z, LIU Y, et al. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017-8024. |
22 | YANG Y X, MENG X Q, CAO H B, et al. Selective recovery of lithium from spent lithium iron phosphate batteries: A sustainable process[J]. Green Chemistry, 2018, 20(13): 3121-3133. |
23 | KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Management, 2020, 113: 32-40. |
24 | ZHANG J L, HU J T, LIU Y B, et al. Sustainable and facile method for the selective recovery of lithium from cathode scrap of spent LiFePO4 batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5626-5631. |
25 | 谢勇, 钟贵明, 龚正良, 等. Li3Fe2(PO4)3/C正极材料的电化学性能及其反应机理研究[J]. 电化学, 2015, 21(2): 123-129. |
XIE Y, ZHONG G M, GONG Z L, et al. Electrochemical performance and reaction mechanism of Li3Fe2(PO4)3/C cathode material[J]. Journal of Electrochemistry, 2015, 21(2): 123-129. | |
26 | 兰玮锋. 氧化铜矿硫酸搅拌浸出试验研究[J]. 中国资源综合利用, 2018, 36(4): 3-4, 8. |
LAN W F. Study on stirring and leaching of sulfuric acid in copper oxide[J]. China Resources Comprehensive Utilization, 2018, 36(4): 3-4, 8. | |
27 | YAN T T, ZHONG S W, ZHOU M M, et al. High-efficiency method for recycling lithium from spent LiFePO4 cathode[J]. Nanotechnology Reviews, 2020, 9: 1586-1593. |
28 | JHA M K, KUMARI A, JHA A K, et al. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone[J]. Waste Management, 2013, 33(9): 1890-1897. |
29 | 宋昌斌, 李润超. 碳酸锂在水中的溶解度和超溶解度的测定及热力学分析[J]. 化工进展, 2016, 35(8): 2350-2354. |
SONG C B, LI R C. Measurement and thermodynamic analysis of the solubility and supersolubility of lithium carbonate in water[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2350-2354. |
[1] | Haoyi XIAO, Xiaoxia HE, Jiajia LIANG, Chunli LI. A lithium battery life-prediction method based on mode decomposition and machine learning [J]. Energy Storage Science and Technology, 2022, 11(12): 3999-4009. |
[2] | Xudong LI, Xiangwen ZHANG. State of health estimation method for lithium-ion batteries based on principal component analysis and whale optimization algorithm-Elman model [J]. Energy Storage Science and Technology, 2022, 11(12): 4010-4021. |
[3] | Yang WANG, Yuxin ZHANG, Xu LU, Long LIU. Performance of an NCM811 battery based on a lithium-ion embedding model [J]. Energy Storage Science and Technology, 2022, 11(12): 3748-3758. |
[4] | Kai DING, Yimin QIAN, Qiao CHEN, Jian ZHENG, Yi WANG. Multitimescale equalization method for lithium-ion battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(12): 3872-3882. |
[5] | Junfei ZHOU, Xingpeng CAI, Hao DING, Xiaoling CUI. Effect of anionic redox reaction on lithium-rich manganese-based materials and its modification strategy [J]. Energy Storage Science and Technology, 2022, 11(12): 3733-3740. |
[6] | Kaibo ZHANG, Kaili JIA, Xiaoming XU, Tao ZENG, Youbao XUE, Liu WAN, Zongliang ZHAO. Effect of carbon-coated aluminum foil on high energy density LiFePO4 power battery [J]. Energy Storage Science and Technology, 2022, 11(12): 3741-3747. |
[7] | Qingwen GAO, Zhihao YANG, Wenpeng LI, Wenjia WU, Jingtao WANG. Preparation and performance of Co2+-doped CeO2-based laminar composite solid-state electrolyte [J]. Energy Storage Science and Technology, 2022, 11(12): 3776-3786. |
[8] | Zhuo XU, Xichao LI, Longzhou JIA, Bing CHEN, Zuoqiang DAI, Lili ZHENG. Effect of overcharge cycle on capacity attenuation and safety of lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(12): 3978-3986. |
[9] | Linsen ZHANG, Shiqi WANG, Lixia WANG, Yanhua SONG. Synthesis and performances of Li+ modified g-C3N4 for PEO-based composite solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(11): 3463-3469. |
[10] | Jie CHEN, Weilun CHEN, Xu ZHANG, Yanwei ZHOU, Wuxing ZHANG. Research progress of pre-sodiation technologies in sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3487-3496. |
[11] | Xiaohan LI, Lei SUN, Yong MA, Dongliang GUO, Peng XIAO, Jianjun LIU, Peng WU, Zhihang ZHANG, Xuebing HAN. Energy state estimation of lithium-ion batteries based on sage-husa EKF algorithm [J]. Energy Storage Science and Technology, 2022, 11(11): 3603-3612. |
[12] | Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG. Research progress of hard carbon anode materials for sodium ion batteries [J]. Energy Storage Science and Technology, 2022, 11(11): 3497-3509. |
[13] | Fang LI, Yongjun MIN, Chen WANG, Yong ZHANG. State of health estimation and remaining useful life predication of lithium batteries using charging process [J]. Energy Storage Science and Technology, 2022, 11(10): 3316-3327. |
[14] | Kuining LI, Jinghong WANG, Yi XIE, Bin LIU, Jiangyan LIU, Zhaoting LIU. Low-temperature compound-heating strategy and optimization of lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(10): 3191-3199. |
[15] | Kai DING, Jian ZHENG, Wei LI, Zengrui HUANG, Yi WANG, Yimin QIAN, Zixuan ZHENG, Qi XIE. Hierarchical voltage sag mitigation scheme based on user-side energy storage systems and its economic analysis [J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||