Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (6): 1725-1738.doi: 10.19799/j.cnki.2095-4239.2022.0169
Previous Articles Next Articles
SHI Peng1(), ZHAI Ximin2, YANG Hejie2, ZHAO Chenzi1, YAN Chong1, BIE Xiaofei2, JIANG Tao2, ZHANG Qiang1()
Received:
2022-03-30
Revised:
2022-05-11
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZHANG Qiang
E-mail:sp17@mails.tsinghua.edu.cn;zhang-qiang@mails.tsinghua.edu.cn
CLC Number:
SHI Peng, ZHAI Ximin, YANG Hejie, ZHAO Chenzi, YAN Chong, BIE Xiaofei, JIANG Tao, ZHANG Qiang. Recent advances in composite lithium anode under practical conditions[J]. Energy Storage Science and Technology, 2022, 11(6): 1725-1738.
Fig. 2
(a) Failure mechanism map at varied currents and capacities. The color of samples in the transition zone indicates the occurrence ratio of polarization and short-circuit failure; (b) The photo and scanning electron microscope (SEM) images of electrode and separator after 10 cycles at10.0 mA/cm2/10.0 mAh/cm2[86]"
Fig. 3
Diagram of the relationship between energy density and specific capacity of the composite lithium anode[88]. The calculation bases on the total mass of a battery. The capacity of the battery is 5 Ah, the area of the electrode is 28 cm2,the amount of the electrolyte is 2.3 g/Ah and the N/P ratio is 2"
Fig. 4
(a) Schematic of the material design and the consequent synthetic procedures from a GO film (left) to a sparked rGO film (middle) to a layered Li-rGO composite film (right); (b) Illustration for the structural evolution from the Li/G composite to the Li@G anode(left),and large area of anode (right)[106]; (c) The graphical illustration of synthetic process and plating/strippng behavior of Mg x Li y /LiF-Li-rGO anode[107]; (d) Digital and SEM images of the sandwiched Li[108]"
Fig. 5
(a) Preparation of Li/CF composite anode and the formation of LiC6 layers[115]; (b) Schematic diagram of the fabrication process of housed Li[116]; (c) Illustration of self-smoothing behaviour in the Li-C anode[117]; (d) Schematic illustration of the plating process in composite anode with a routine 3D host and a pressure self-adaptable host[118]"
Fig. 6
(a) Lithium deposits on copper foil directly and through PMF[123]; (b) Electrokinetic phenomena in 3D PPS under an electric field and electrodiffusion of Li ions in traditional cells under an electric field, The green and orange balls represent cations and anions, respectively[125]; (c) Schematic illustration of the polar interaction between the polymer host and solvent molecules in a composite Li anode[126]"
Table 1
Comparison of cycle performance with composite Li anodes"
复合锂负极 | 厚度/面容量 | 纽扣电池 | 软包电池 | 参考文献 |
---|---|---|---|---|
正极面载量,循环圈数-容量保持率 | 容量,循环圈数 | |||
中空碳纤维 | 约165 μm 6.0 mAh/cm2 | LiFePO4(LFP) 13.0 mg/cm2 200-91% | — | [ |
Li/碳布 | 约300 μm 40.0 mAh/cm2 | LiNi5Co2Mn3O4 11.8 mg/cm2 300-83% | — | [ |
3D 碳纸 | 300 μm 10.0 mAh/cm2 | LiNi0.8Co0.15Al0.05O2 4~5.0 mg/cm2 200-82.5% | — | [ |
LiSi x | 2.0 mAh/cm2 | NCM811 2.0 mg/cm2 50-90% | — | [ |
Li/C | 90 μm 10.0 mAh/cm2 | NCM523约3 mAh/cm2 210-80% | NCM523约1.0 Ah,150 | [ |
Li/ELPAN | 40 μm 6.6 mAh/cm2 | NCM523 2.5 mAh/cm2 145-80% | NCM523约1.0 Ah,60 | [ |
Li/CF@PAN | 103 μm 6.6 mAh/cm2 | LiNi0.5Co0.2Mn0.3O2约21.0 mg/cm2 160-80% | NCM523约1.0 Ah,68 | [ |
GO-ADP-Li3 | 100 μm 20 mAh/cm2 | — | NCM811约0.2 Ah,150 | [ |
Mg x Li y /LiF-Li-rGO | 50 μm 5.68 mAh/cm2 | LFP 7.0 mg/cm2 400-80% | NCM811约0.2 Ah,150 | [ |
Li@G | 120 μm 约10 mAh/cm2 | — | NCM8112.6 Ah,100 | [ |
Li-C | 约100 μm 6.31 mAh/cm2 | NCM811 4.2 mAh/cm2 200-91% | — | [ |
Li@eGF | 约20 μm 3.68 mAh/cm2 | — | LFP单片,200 | [ |
Fig. 7
(a) The summary diagram of the relation between the cycling performance and the conductivity of different hosts[132]; (b) The schematic illustration of the morphology of Li deposition in composite anodes with conductive and non-conductive host[132]; (c) The Li nucleation overpotential of Cu and CuZn at different cycles[133]; (d) Schematic diagram of failure mechanism and reactivation of lithiophilic sites[133]"
1 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
2 | XU W, WANG J L, DING F, et al. Lithium Metal Anodes for Rechargeable Batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537. |
3 | LI J W, KONG Z, LIU X X, et al. Strategies to anode protection in lithium metal battery: A review[J]. InfoMat, 2021, 3(12): 1333-1363. |
4 | CHENG X B, LIU H, YUAN H, et al. A perspective on sustainable energy materials for lithium batteries[J]. SusMat, 2021, 1(1): 38-50. |
5 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
6 | EVARTS E C. Lithium batteries: To the limits of lithium[J]. Nature, 2015, 526(7575): S93-S95. |
7 | ZHANG X Q, ZHAO C Z, HUANG J Q, et al. Recent advances in energy chemical engineering of next-generation lithium batteries[J]. Engineering, 2018, 4(6): 831-847. |
8 | CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151. |
9 | WU F X, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
10 | REN X D, ZOU L F, JIAO S H, et al. High-concentration ether electrolytes for stable high-voltage lithium metal batteries[J]. ACS Energy Letters, 2019, 4(4): 896-902. |
11 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.2016.05989. |
12 | CHEN S R, ZHENG J M, MEI D H, et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Advanced Materials, 2018, 30(21): doi: 10.1002/adma.201706102. |
13 | LI M, WANG C S, CHEN Z W, et al. New concepts in electrolytes[J]. Chemical Reviews, 2020, 120(14): 6783-6819. |
14 | YANG S J, XU X Q, CHENG X B, et al. Columnar lithium metal deposits: The role of non-aqueous electrolyte additive[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202007058. |
15 | QI S H, LIU J D, HE J, et al. Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering[J]. Journal of Energy Chemistry, 2021, 63: 270-277. |
16 | QI S H, WANG H P, HE J, et al. Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries[J]. Science Bulletin, 2021, 66(7): 685-693. |
17 | XU R, XIAO Y, ZHANG R, et al. Dual-phase single-ion pathway interfaces for robust lithium metal in working batteries[J]. Advanced Materials, 2019, 31(19): doi: 10.1002/adma.201808392. |
18 | YAN C, CHENG X B, YAO Y X, et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode[J]. Advanced Materials, 2018, 30(45): doi: 10.1002/adma.201804461. |
19 | XU R, ZHANG X Q, CHENG X B, et al. Artificial soft-rigid protective layer for dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2018, 28(8): doi: 10.1002/adfm.201705838. |
20 | LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. |
21 | ZHAO C Z, CHEN P Y, ZHANG R, et al. An ion redistributor for dendrite-free lithium metal anodes[J]. Science Advances, 2018, 4(11): eaat3446. |
22 | ZHAI P B, WANG T S, JIANG H N, et al. 3D artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, 33(13): doi: 10.1002/adma.202006247. |
23 | YE S F, WANG L F, LIU F F, et al. G-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): doi: 10.1002/aenm.202002647. |
24 | YAO Y X, ZHANG X Q, LI B Q, et al. A compact inorganic layer for robust anode protection in lithium-sulfur batteries[J]. InfoMat, 2020, 2(2): 379-388. |
25 | DING J F, XU R, YAN C, et al. A review on the failure and regulation of solid electrolyte interphase in lithium batteries[J]. Journal of Energy Chemistry, 2021, 59: 306-319. |
26 | GAO J, SHAO Q J, CHEN J. Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery[J]. Journal of Energy Chemistry, 2020, 46: 237-247. |
27 | XU R, CHENG X B, YAN C, et al. Artificial interphases for highly stable lithium metal anode[J]. Matter, 2019, 1(2): 317-344. |
28 | SUN S, ZHAO C-Z, YUAN H, et al. Multiscale Understanding of High-Energy Cathodes in Solid-State Batteries: From Atomic Scale to Macroscopic Scale[J]. Materials Futures, 2022, 1(1): 012101. |
29 | HUANG W Z, YOSHINO K, HORI S, et al. Superionic lithium conductor with a cubic argyrodite-type structure in the Li-Al-Si-S system[J]. Journal of Solid State Chemistry, 2019, 270: 487-492. |
30 | HUANG W Z, CHENG L D, HORI S, et al. Ionic conduction mechanism of a lithium superionic argyrodite in the Li-Al-Si-S-O system[J]. Materials Advances, 2020, 1(3): 334-340. |
31 | HUANG W Z, MATSUI N, HORI S, et al. Anomalously high ionic conductivity of Li2 SiS 3-type conductors[J]. Journal of the American Chemical Society, 2022, 144(11): 4989-4994. |
32 | SHENG O W, ZHENG J H, JU Z J, et al. In situ construction of a LiF-enriched interface for stable all-solid-state batteries and its origin revealed by cryo-TEM[J]. Advanced Materials, 2020, 32(34): doi: 10.1002/adma.202000223. |
33 | SHENG O W, JIN C B, DING X F, et al. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions[J]. Advanced Functional Materials, 2021, 31(27): doi: 10.1002/adfm.202100891. |
34 | ZHU G L, ZHAO C Z, YUAN H, et al. Liquid phase therapy with localized high-concentration electrolytes for solid-state Li metal pouch cells[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202005003. |
35 | HE K Q, CHENG S H S, HU J Y, et al. In-situ intermolecular interaction in composite polymer electrolyte for ultralong life quasi-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(21): 12116-12123. |
36 | SHI K, WAN Z P, YANG L, et al. In Situ construction of an ultra-stable conductive composite interface for high-voltage all-solid-state lithium metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(29): 11784-11788. |
37 | ZHU J X, LI X L, WU C W, et al. A multilayer ceramic electrolyte for all-solid-state Li batteries[J]. Angewandte Chemie International Edition, 2021, 60(7): 3781-3790. |
38 | GAO L, LUO S B, LI J X, et al. Core-shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries[J]. Energy Storage Materials, 2021, 43: 266-274. |
39 | 张赛赛, 赵海雷. 石榴石型Li7La3Zr2O12固态锂金属电池的界面问题研究进展[J]. 储能科学与技术, 2021, 10(3): 863-871. |
ZHANG S S, ZHAO H L. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress[J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. | |
40 | LIU L, YIN Y X, LI J Y, et al. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes[J]. Advanced Materials, 2018, 30(10): doi: 10.1002/adma.201706216. |
41 | SUN Z W, JIN S, JIN H C, et al. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes[J]. Advanced Materials, 2018, 30(32): doi: 10.1002/adma.201800884. |
42 | WANG S H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): doi: 10.1002/adma.201703729. |
43 | SONG Q, YAN H B, LIU K D, et al. Vertically grown edge-rich graphene nanosheets for spatial control of Li nucleation[J]. Advanced Energy Materials, 2018, 8(22): doi: 10.1002/aenm. 201800564. |
44 | CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): doi: 10.1002/adfm. 201700348. |
45 | ZHAI P B, WEI Y, XIAO J, et al. In situ generation of artificial solid-electrolyte interphases on 3D conducting scaffolds for high-performance lithium-metal anodes[J]. Advanced Energy Materials, 2020, 10(8): doi: 10.1002/aenm.201903339. |
46 | MAO H, YU W, CAI Z Y, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(35): 19306-19313. |
47 | YAO Z Y, JIA W S, WANG Z H, et al. Fast ion/electron conducting scaffold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities[J]. Journal of Energy Chemistry, 2020, 51: 285-292. |
48 | ZHANG L, ZHENG H F, LIU B, et al. Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton[J]. Journal of Energy Chemistry, 2021, 57: 392-400. |
49 | ZHAO M, LI B Q, ZHANG X Q, et al. A perspective toward practical lithium-sulfur batteries[J]. ACS Central Science, 2020, 6(7): 1095-1104. |
50 | BHARGAV A, HE J R, GUPTA A, et al. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291. |
51 | CHEN S R, NIU C J, LEE H, et al. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4): 1094-1105. |
52 | 王鑫萌, 石鹏, 张学强, 等. 实用化条件下金属锂负极失效的研究[J]. 物理学报, 2020, 69(22): 228501. |
WANG X M, SHI P, ZHANG X Q, et al. Failure mechanism of lithium metal anode under practical conditions[J]. Acta Physica Sinica, 2020, 69(22): 228501. | |
53 | LIU T, LI H J, YUE J M, et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells[J]. Angewandte Chemie International Edition, 2021, 60(32): 17547-17555. |
54 | SHI Y, WAN J, LIU G X, et al. Interfacial evolution of lithium dendrites and their solid electrolyte interphase shells of quasi-solid-state lithium-metal batteries[J]. Angewandte Chemie International Edition, 2020, 59(41): 18120-18125. |
55 | DING J F, XU R, YAN C, et al. Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries[J]. Chinese Chemical Letters, 2020, 31(9): 2339-2342. |
56 | CHENG Y F, CHEN J B, CHEN Y M, et al. Lithium Host: Advanced architecture components for lithium metal anode[J]. Energy Storage Materials, 2021, 38: 276-298. |
57 | 刘洋洋, 王旭阳, 徐谢宇, 等. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272. |
LIU Y Y, WANG X Y, XU X Y, et al. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. | |
58 | ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Advanced Science, 2017, 4(3): doi: 10.1002/advs.201600445. |
59 | SHI P, ZHANG X Q, SHEN X, et al. A review of composite lithium metal anode for practical applications[J]. Advanced Materials Technologies, 2020, 5(1): doi: 10.1002/admt.201900806. |
60 | JIN S, JIANG Y, JI H X, et al. Advanced 3D current collectors for lithium-based batteries[J]. Advanced Materials, 2018, 30(48): doi: 10.1002/adma.201802014. |
61 | ZHAO Y M, REN L X, WANG A X, et al. Composite anodes for lithium metal batteries[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202008090. |
62 | NIU C J, LEE H, CHEN S R, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559. |
63 | ZHANG C Y, WANG A X, ZHANG J H, et al. 2D materials for lithium/sodium metal anodes[J]. Advanced Energy Materials, 2018, 8(34): doi: 10.1002/aenm.201802833. |
64 | YANG H J, GUO C, NAVEED A, et al. Recent progress and perspective on lithium metal anode protection[J]. Energy Storage Materials, 2018, 14: 199-221. |
65 | CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1: 16013. |
66 | JIN C B, LIU T F, SHENG O W, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, 6(4): 378-387. |
67 | WANG Q, WU K, WANG H C, et al. Lithiophilic 3D SnS2@Carbon fiber cloth for stable Li metal anode[J]. Acta Physico Chimica Sinica, 2020: doi: 10.3866/PKU.WHXB202007092. |
68 | DU Y, GAO X, LI S W, et al. Recent advances in metal-organic frameworks for lithium metal anode protection[J]. Chinese Chemical Letters, 2020, 31(3): 609-616. |
69 | WANG T R, ZHANG R Q, WU Y M, et al. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries[J]. Journal of Energy Chemistry, 2020, 46: 187-190. |
70 | ZHANG Z, HUANG Y, GAO H, et al. MOF-derived multifunctional filler reinforced polymer electrolyte for solid-state lithium batteries[J]. Journal of Energy Chemistry, 2021, 60: 259-271. |
71 | MENG N, ZHU X G, LIAN F. Particles in composite polymer electrolyte for solid-state lithium batteries: A review[J]. Particuology, 2022, 60: 14-36. |
72 | YUAN H D, NAI J W, TIAN H, et al. An ultrastable lithium metal anode enabled by designed metal fluoride spansules[J]. Science Advances, 2020, 6(10): eaaz3112. |
73 | ZHAO C Z, DUAN H, HUANG J Q, et al. Designing solid-state interfaces on lithium-metal anodes: A review[J]. Science China Chemistry, 2019, 62(10): 1286-1299. |
74 | 赵辰孜, 袁洪, 卢洋, 等. 固态金属锂负极界面研究进展[J]. 化工进展, 2021, 40(9): 4986-4997. |
ZHAO C Z, YUAN H, LU Y, et al. Review on interfaces in solid-state lithium metal anodes[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997. | |
75 | LIU J, BAO Z N, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
76 | LI H. Practical evaluation of Li-ion batteries[J]. Joule, 2019, 3(4): 911-914. |
77 | NIU C J, LIU D Y, LOCHALA J A, et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries[J]. Nature Energy, 2021, 6(7): 723-732. |
78 | BAI P, GUO J Z, WANG M, et al. Interactions between lithium growths and nanoporous ceramic separators[J]. Joule, 2018, 2(11): 2434-2449. |
79 | GUAN X Z, WANG A X, LIU S, et al. Controlling nucleation in lithium metal anodes[J]. Small, 2018, 14(37): doi: 10.1002/smll. 201801423. |
80 | JIANG F N, YANG S J, LIU H, et al. Mechanism understanding for stripping electrochemistry of Li metal anode[J]. SusMat, 2021, 1(4): 506-536. |
81 | XU R, YAN C, HUANG J Q. Competitive solid-electrolyte interphase formation on working lithium anodes[J]. Trends in Chemistry, 2021, 3(1): 5-14. |
82 | YAN C, ZHANG X Q, HUANG J Q, et al. Lithium-anode protection in lithium-sulfur batteries[J]. Trends in Chemistry, 2019, 1(7): 693-704. |
83 | 林振康, 乔耀璇, 王伟, 等. 基于非线性动力学的锂沉积形貌模拟与预测[J]. 化工学报, 2020, 71(9): 4228-4237. |
LIN Z K, QIAO Y X, WANG W, et al. Morphology prediction of lithium plating by finite element modeling and simulations based on non-linear kinetics[J]. CIESC Journal, 2020, 71(9): 4228-4237. | |
84 | 南皓雄, 赵辰孜, 袁洪, 等. 固态金属锂电池研究进展:外部压力和内部应力的影响[J]. 化工学报, 2021, 72(1): 61-70. |
NAN H X, ZHAO C Z, YUAN H, et al. Recent advances in solid-state lithium metal batteries: The role of external pressure and internal stress[J]. CIESC Journal, 2021, 72(1): 61-70. | |
85 | 张睿, 沈馨, 王金福, 等. 锂离子在三维骨架复合锂金属负极中的沉积规律[J]. 化工学报, 2020, 71(6): 2688-2695, 2921. |
ZHANG R, SHEN X, WANG J F, et al. Plating of Li ions in 3D structured lithium metal anodes[J]. CIESC Journal, 2020, 71(6): 2688-2695, 2921. | |
86 | SHI P, CHENG X B, LI T, et al. Electrochemical diagram of an ultrathin lithium metal anode in pouch cells[J]. Advanced Materials, 2019, 31(37): doi: 10.1002/adma.201902785. |
87 | JIN C, SHENG O, CHEN M, et al. Armed lithium metal anodes with functional skeletons[J]. Materials Today Nano, 2021, 13: doi: 10.1016/j.mtnano.2020.100103. |
88 | SHI P, HOU L P, JIN C B, et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes[J]. Journal of the American Chemical Society, 2022, 144(1): 212-218. |
89 | CAO W Z, LI Q, YU X Q, et al. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78. |
90 | WANG S J, XIONG P, ZHANG J Q, et al. Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes[J]. Energy Storage Materials, 2020, 29: 310-331. |
91 | LI T, LIU H, SHI P, et al. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries[J]. Rare Metals, 2018, 37(6): 449-458. |
92 | 詹迎新, 石鹏, 张学强, 等. 锂金属负极亲锂骨架的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1569-1580. |
ZHAN Y X, SHI P, ZHANG X Q, et al. Recent progress of lithiophilic host for lithium metal anode[J]. Chemical Journal of Chinese Universities, 2021, 42(5): 1569-1580. | |
93 | LU Q Q, JIE Y L, MENG X Q, et al. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook[J]. Carbon Energy, 2021, 3(6): 957-975. |
94 | PATHAK R, CHEN K, WU F, et al. Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries[J]. Energy Storage Materials, 2021, 41: 448-465. |
95 | LEE J, LEE T H, JANG H W, et al. Chemical modification of ordered/disordered carbon nanostructures for metal hosts and electrocatalysts of lithium-air batteries[J]. InfoMat, 2022, 4(1): e12268. |
96 | LUO G, HU X L, LIU W, et al. Freestanding polypyrrole nanotube/reduced graphene oxide hybrid film as flexible scaffold for dendrite-free lithium metal anodes[J]. Journal of Energy Chemistry, 2021, 58: 285-291. |
97 | LIU J, YUAN H, CHENG X B, et al. A review of naturally derived nanostructured materials for safe lithium metal batteries[J]. Materials Today Nano, 2019, 8: doi: 10.1016/j.mtnano.2019.100049. |
98 | ZHANG C, HUANG Z J, LV W, et al. Carbon enables the practical use of lithium metal in a battery[J]. Carbon, 2017, 123: 744-755. |
99 | KANG T, WANG Y L, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science, 2019, 5(3): 468-476. |
100 | BAI M H, XIE K Y, YUAN K, et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers[J]. Advanced Materials, 2018, 30(29): doi: 10.1002/adma.201801213. |
101 | JIN C B, SHI P, ZHANG X Q, et al. Advances in carbon materials for stable lithium metal batteries[J]. New Carbon Materials, 2022, 37(1): 1-24. |
102 | ZHANG R, CHENG X B, ZHAO C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016, 28(11): 2155-2162. |
103 | ZHANG R, CHEN X R, CHEN X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes[J]. Angewandte Chemie International Edition, 2017, 56(27): 7764-7768. |
104 | LIN D C, LIU Y Y, LIANG Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes[J]. Nature Nanotechnology, 2016, 11(7): 626-632. |
105 | CHEN H, YANG Y F, BOYLE D T, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries[J]. Nature Energy, 2021, 6(8): 790-798. |
106 | HE B Y, DENG W, HAN Q G, et al. Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 Whkg-1 lithium metal pouch cell[J]. Journal of Materials Chemistry A, 2021, 9(45): 25558-25566. |
107 | XU Q S, YANG X F, RAO M M, et al. High energy density lithium metal batteries enabled by a porous graphene/MgF2 framework[J]. Energy Storage Materials, 2020, 26: 73-82. |
108 | LI T, SHI P, ZHANG R, et al. Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior[J]. Nano Research, 2019, 12(9): 2224-2229. |
109 | LIU H, LI T, XU X Q, et al. Stable interfaces constructed by concentrated ether electrolytes to render robust lithium metal batteries[J]. Chinese Journal of Chemical Engineering, 2021, 37: 152-158. |
110 | JIN C B, NAI J W, SHENG O W, et al. Biomass-based materials for green lithium secondary batteries[J]. Energy & Environmental Science, 2021, 14(3): 1326-1379. |
111 | JIN C B, SHENG O W, ZHANG W K, et al. Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode[J]. Energy Storage Materials, 2018, 15: 218-225. |
112 | LIU J, YUAN H, TAO X Y, et al. Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries[J]. EcoMat, 2020, 2(1): e12019. |
113 | LIU L, YIN Y X, LI J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule, 2017, 1(3): 563-575. |
114 | ZHANG Y, LUO W, WANG C W, et al. High-capacity, low-tortuosity, and channel-guided lithium metal anode[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3584-3589. |
115 | SHI P, LI T, ZHANG R, et al. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): doi: 10.1002/adma.201807131. |
116 | SHEN X, CHENG X B, SHI P, et al. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries[J]. Journal of Energy Chemistry, 2019, 37: 29-34. |
117 | NIU C J, PAN H L, XU W, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594-601. |
118 | SHI P, ZHANG X Q, SHEN X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): doi: 10.1002/adfm. 202004189. |
119 | LI N, WEI W F, XIE K Y, et al. Suppressing dendritic lithium formation using porous media in lithium metal-based batteries[J]. Nano Letters, 2018, 18(3): 2067-2073. |
120 | MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929. |
121 | LIANG Z, ZHENG G Y, LIU C, et al. Polymer nanofiber-guided uniform lithium deposition for battery electrodes[J]. Nano Letters, 2015, 15(5): 2910-2916. |
122 | XU B Q, ZHAI H W, LIAO X B, et al. Porous insulating matrix for lithium metal anode with long cycling stability and high power[J]. Energy Storage Materials, 2019, 17: 31-37. |
123 | FAN L, ZHUANG H L, ZHANG W D, et al. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode[J]. Advanced Energy Materials, 2018, 8(15): doi: 10.1002/aenm.201703360. |
124 | ZHANG W D, ZHUANG H L, FAN L, et al. A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries[J]. Science Advances, 2018, 4(2): eaar4410. |
125 | LI G X, LIU Z, HUANG Q Q, et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects[J]. Nature Energy, 2018, 3(12): 1076-1083. |
126 | SHI P, LIU Z Y, ZHANG X Q, et al. Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes[J]. Journal of Energy Chemistry, 2022, 64: 172-178. |
127 | ZHOU Y, HAN Y, ZHANG H T, et al. A carbon cloth-based lithium composite anode for high-performance lithium metal batteries[J]. Energy Storage Materials, 2018, 14: 222-229. |
128 | ZHOU X H, HUANG W J, SHI C G, et al. Enabling lithium-metal anode encapsulated in a 3D carbon skeleton with a superior rate performance and capacity retention in full cells[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 35296-35305. |
129 | CHEN L, FAN X L, JI X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
130 | LIANG J H, DENG W, ZHOU X F, et al. High Li-ion conductivity artificial interface enabled by Li-grafted graphene oxide for stable Li metal pouch cell[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29500-29510. |
131 | HE B Y, DENG W, HAN Q G, et al. Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 Whkg-1 lithium metal pouch cell[J]. Journal of Materials Chemistry A, 2021, 9(45): 25558-25566. |
132 | ZHAN Y X, SHI P, ZHANG R, et al. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(37): doi: 10.1002/aenm.202101654. |
133 | ZHAN Y X, SHI P, MA X X, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions[J]. Advanced Energy Materials, 2022, 12(2): doi: 10. 1002/aenm.202103291. |
134 | SHEN X, ZHANG R, CHEN X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? [J]. Advanced Energy Materials, 2020, 10(10): doi: 10.1002/aenm.201903645. |
135 | SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries? [J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003416. |
[1] | Xingxing WANG, Ziyu SONG, Hao WU, Wenfang FENG, Zhibin ZHOU, Heng ZHANG. Advances in conducting lithium salts for solid polymer electrolytes [J]. Energy Storage Science and Technology, 2022, 11(4): 1226-1235. |
[2] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[3] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[4] | Yajie LI, Geng ZHANG, Liting SHA, Wei ZHAO, Bin CHEN, Da WANG, Jia YU, Siqi SHI. Phase-field simulation of dendrite growth in rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 929-938. |
[5] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[6] | Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 974-986. |
[7] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[8] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. |
[9] | WANG Chenglin, QU Shiji, LI Jingze. Protective mechanism of the Li alloy film-buffered Li metal anode [J]. Energy Storage Science and Technology, 2020, 9(2): 368-374. |
[10] | FANG Congcong, LIU Wen, WANG Yong, GUO Rui, PEI Haijuan, YU Shengxue, XIE Jingying. In suit physicial characterization of lithium anode [J]. Energy Storage Science and Technology, 2018, 7(S1): 54-62. |
[11] | YU Xiangnan, MA Tianyi, LI Huiyu, ZHANG Wenguang, HAN Minfang, QIU Xinping. Preparation and properties of Si-PDCNT flexible composite anode [J]. Energy Storage Science and Technology, 2018, 7(3): 450-458. |
[12] | YANG Bin1,2, FU Guansheng2, DING Sheng2, WANG Chengyang1, RUAN Dianbo2, LIU Qiuxiang2. Electrochemical performance of lithium ion capacitors using high-capacitance Li2NiO2/AC as the negative electrode [J]. Energy Storage Science and Technology, 2018, 7(2): 270-275. |
[13] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[14] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
[15] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||