Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (2): 570-578.doi: 10.19799/j.cnki.2095-4239.2022.0630
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Wenkai ZHU(), Xing ZHOU(), Yajie LIU, Tao ZHANG(), Yuanming SONG
Received:
2022-10-27
Revised:
2022-11-20
Online:
2023-02-05
Published:
2023-02-24
Contact:
Xing ZHOU, Tao ZHANG
E-mail:zhuwenkai20@nudt.edu.cn;395877464@ qq.com;zhangtao@ nudt.edu.cn
CLC Number:
Wenkai ZHU, Xing ZHOU, Yajie LIU, Tao ZHANG, Yuanming SONG. Real time state of charge estimation method of lithium-ion battery based on recursive gated recurrent unit neural network[J]. Energy Storage Science and Technology, 2023, 12(2): 570-578.
1 | LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | ZHANG C P, WANG L Y, LI X, et al. Robust and adaptive estimation of state of charge for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4948-4957. |
3 | 武龙星, 庞辉, 晋佳敏, 等. 基于电化学模型的锂离子电池荷电状态估计方法综述[J]. 电工技术学报, 2022, 37(7): 1703-1725. |
WU L X, PANG H, JIN J M, et al. A review of SOC estimation methods for lithium-ion batteries based on electrochemical model[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1703-1725. | |
4 | 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175. |
WU C L, HU W B, MENG J H, et al. State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175. | |
5 | XU Z C, WANG J, LUND P D, et al. Co-estimating the state of charge and health of lithium batteries through combining a minimalist electrochemical model and an equivalent circuit model[J]. Energy, 2022, 240: doi: 10.1016/j.energy.2021.122815. |
6 | HE H W, XIONG R, FAN J X. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies, 2011, 4(4): 582-598. |
7 | HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[J]. Journal of Power Sources, 2012, 198: 359-367. |
8 | 朱奕楠, 吕桃林, 赵芝芸, 等. 基于并行卡尔曼滤波器的锂离子电池荷电状态估计[J]. 储能科学与技术, 2021, 10(6): 2352-2362. |
ZHU Y N, LÜ T L, ZHAO Z Y, et al. State of charge estimation of lithium ion battery based on parallel Kalman filter[J]. Energy Storage Science and Technology, 2021, 10(6): 2352-2362. | |
9 | YAN W Z, ZHANG B, ZHAO G Q, et al. A battery management system with a lebesgue-sampling-based extended Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3227-3236. |
10 | SHEHAB EL DIN M, HUSSEIN A A, ABDEL-HAFEZ M F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408-417. |
11 | SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540. |
12 | DAI H F, WEI X Z, SUN Z C, et al. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications[J]. Applied Energy, 2012, 95: 227-237. |
13 | SHEN H R, ZHOU X Y, WANG Z J, et al. State of charge estimation for lithium-ion battery using Transformer with immersion and invariance adaptive observer[J]. Journal of Energy Storage, 2022, 45: doi: 10.1016/j.est.2021.103768. |
14 | WEI Z B, MENG S J, XIONG B Y, et al. Enhanced online model identification and state of charge estimation for lithium-ion battery with a FBCRLS based observer[J]. Applied Energy, 2016, 181: 332-341. |
15 | CHEN N, ZHANG P, DAI J Y, et al. Estimating the state-of-charge of lithium-ion battery using an H-infinity observer based on electrochemical impedance model[J]. IEEE Access, 2020, 8: 26872-26884. |
16 | TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291: doi: 10.1016/j.apenergy. 2021.116812. |
17 | 李超然, 肖飞, 樊亚翔, 等. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法[J]. 电工技术学报, 2020, 35(9): 2051-2062. |
LI C R, XIAO F, FAN Y X, et al. A hybrid approach to lithium-ion battery SOC estimation based on recurrent neural network with gated recurrent unit and Huber-M robust Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2051-2062. | |
18 | CALIWAG A, LIM W. Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting[J]. ICT Express, 2021, 7(4): 493-496. |
19 | LI R, XU S H, LI S B, et al. State of charge prediction algorithm of lithium-ion battery based on PSO-SVR cross validation[J]. IEEE Access, 2020, 8: 10234-10242. |
20 | SALKIND A J, FENNIE C, SINGH P, et al. Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology[J]. Journal of Power Sources, 1999, 80(1/2): 293-300. |
21 | DENG Z W, HU X S, LIN X K, et al. Data-driven state of charge estimation for lithium-ion battery packs based on Gaussian process regression[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.118000. |
22 | LI J, ZIEHM W, KIMBALL J, et al. Physical-based training data collection approach for data-driven lithium-ion battery state-of-charge prediction[J]. Energy and AI, 2021, 5: doi: 10.1016/j.egyai. 2021.100094. |
23 | ZHAO X B, XUAN D J, ZHAO K Y, et al. Elman neural network using ant colony optimization algorithm for estimating of state of charge of lithium-ion battery[J]. Journal of Energy Storage, 2020, 32: doi: 10.1016/j.est.2020.101789. |
24 | CHEN J X, FENG X, JIANG L, et al. State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network[J]. Energy, 2021, 227: doi: 10.1016/j.energy.2021.120451. |
25 | MA L, HU C, CHENG F. State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network[J]. Journal of Energy Storage, 2021, 37: doi: 10.1016/j.est.2021.102440. |
26 | DENG Z W, YANG L, CAI Y S, et al. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery[J]. Energy, 2016, 112: 469-480. |
27 | 李嘉波, 魏孟, 叶敏, 等. 基于高斯过程回归的锂离子电池SOC估计[J]. 储能科学与技术, 2020, 9(1): 131-137. |
LI J B, WEI M, YE M, et al. SOC estimation of lithium-ion batteries based on Gauss process regression[J]. Energy Storage Science and Technology, 2020, 9(1): 131-137. | |
28 | YANG F F, LI W H, LI C, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75. |
29 | 朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176. |
ZHU Y F, HE W W, LI J X, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176. | |
30 | CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach[J]. Journal of Power Sources, 2018, 400: 242-255. |
[1] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[2] | Zhifu WANG, Wei LUO, Yuan YAN, Song XU, Wenmei HAO, Conglin ZHOU. Fault diagnosis of lithium-ion battery sensors using GAPSO-FNN [J]. Energy Storage Science and Technology, 2023, 12(2): 602-608. |
[3] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[4] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[5] | Yue PAN, Xuebing HAN, Minggao OUYANG, Huahua REN, Wei LIU, Yuejun YAN. Research on the detection algorithm for internal short circuits in lithium-ion batteries and its application to real operating data [J]. Energy Storage Science and Technology, 2023, 12(1): 198-208. |
[6] | Qingyang CHEN, Yinghui HE, Guanding YU, Mingyang LIU, Chong XU, Zhenming LI. Integrating model- and data-driven methods for accurate state estimation of lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 209-217. |
[7] | Xiaolong HE, Xiaolong SHI, Ziyang WANG, Luhao HAN, Bin YAO. Experimental study on thermal runaway characteristics of vehicle NCM lithium-ion batteries under overcharge, overheating, and their combined effects [J]. Energy Storage Science and Technology, 2023, 12(1): 218-226. |
[8] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[9] | Xiaoyu CHEN, Mengmeng GENG, Qiankun WANG, Jiani SHEN, Yijun HE, Zifeng MA. Electrochemical impedance feature selection and gaussian process regression based on the state-of-health estimation method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2995-3002. |
[10] | Linwang DENG, Tianyu FENG, Shiwei SHU, Zifeng ZHANG, Bin GUO. Review of a fast-charging strategy and technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(9): 2879-2890. |
[11] | Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG. High-nickel ternary layered cathode materials for lithium-ion batteries: Research progress, challenges and improvement strategies [J]. Energy Storage Science and Technology, 2022, 11(9): 2900-2920. |
[12] | Yang WANG, Xu LU, Yuxin ZHANG, Long LIU. Thermal runaway exhaust strategy of power battery [J]. Energy Storage Science and Technology, 2022, 11(8): 2480-2487. |
[13] | Qingsong ZHANG, Yang ZHAO, Tiantian LIU. Effects of state of charge and battery layout on thermal runaway propagation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(8): 2519-2525. |
[14] | Yong MA, Xiaohan LI, Lei SUN, Dongliang GUO, Jinggang YANG, Jianjun LIU, Peng XIAO, Guangjun QIAN. Parameter design of lithium-ion batteries based on a three-dimensional electrochemical thermal coupling lithium precipitation model [J]. Energy Storage Science and Technology, 2022, 11(8): 2600-2611. |
[15] | Liang TANG, Xiaobo YIN, Houfu WU, Pengjie LIU, Qingsong WANG. Demand for safety standards in the development of the electrochemical energy storage industry [J]. Energy Storage Science and Technology, 2022, 11(8): 2645-2652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||