Energy Storage Science and Technology ›› 2023, Vol. 12 ›› Issue (7): 2229-2237.doi: 10.19799/j.cnki.2095-4239.2023.0292
Previous Articles Next Articles
Hongsheng GUAN(), Cheng QIAN(), Binghui XU, Bo SUN, Yi REN
Received:
2023-04-28
Revised:
2023-05-23
Online:
2023-07-05
Published:
2023-07-25
Contact:
Cheng QIAN
E-mail:guanhs@buaa.edu.cn;cqian@buaa.edu.cn
CLC Number:
Hongsheng GUAN, Cheng QIAN, Binghui XU, Bo SUN, Yi REN. SAM-GRU-based fusion neural network for SOC estimation in lithium-ion batteries under a wide range of operating conditions[J]. Energy Storage Science and Technology, 2023, 12(7): 2229-2237.
1 | YANG C F, WANG X Y, FANG Q H, et al. An online SOC and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[J]. Journal of Energy Storage, 2020, 29: doi: 10.1016/j.est.2020.101250. |
2 | HOSSAIN LIPU M S, HANNAN M A, KARIM T F, et al. Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook[J]. Journal of Cleaner Production, 2021, 292: doi: 10.1016/j.jclepro. 2021.126044. |
3 | NI Z C, YANG Y. A combined data-model method for state-of-charge estimation of lithium-ion batteries[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-11. |
4 | WU L F, ZHANG Y. Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery[J]. Energy, 2023, 268: doi: 10.1016/j.energy.2023.126665. |
5 | BIAN C, YANG S K, LIU J, et al. Robust state-of-charge estimation of Li-ion batteries based on multichannel convolutional and bidirectional recurrent neural networks[J]. Applied Soft Computing, 2022, 116:doi: 10.1016/j.asoc.2021.108401. |
6 | GUO S S, MA L. A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation[J]. Energy, 2023, 263: doi: 10.1016/j.energy.2022.125872. |
7 | ZHANG G Y, XIA B Z, WANG J M. Intelligent state of charge estimation of lithium-ion batteries based on L-M optimized back-propagation neural network[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103442. |
8 | HOW D N T, HANNAN M A, HOSSAIN LIPU M S, et al. State-of-charge estimation of Li-ion battery in electric vehicles: A deep neural network approach[C]//2019 IEEE Industry Applications Society Annual Meeting. September 29—October 3, 2019, Baltimore, MD, USA. IEEE, 2019: 1-8. |
9 | HANNAN M A, HOW D N T, HOSSAIN LIPU M S, et al. SOC estimation of Li-ion batteries with learning rate-optimized deep fully convolutional network[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 7349-7353. |
10 | LIU Y F, LI J Q, ZHANG G, et al. State of charge estimation of lithium-ion batteries based on temporal convolutional network and transfer learning[J]. IEEE Access, 2021, 9: 34177-34187. |
11 | CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262: doi: 10.1016/j.energy.2022.125375. |
12 | TIAN J P, XIONG R, SHEN W X, et al. State-of-charge estimation of LiFePO4 batteries in electric vehicles: A deep-learning enabled approach[J]. Applied Energy, 2021, 291:doi: 10.1016/j.apenergy. 2021.116812. |
13 | YANG F F, LI W H, LI C, et al. State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network[J]. Energy, 2019, 175: 66-75. |
14 | HANNAN M A, HOW D N T, BIN MANSOR M, et al. State-of-charge estimation of Li-ion battery using gated recurrent unit with one-cycle learning rate policy[J]. IEEE Transactions on Industry Applications, 2021, 57(3): 2964-2971. |
15 | 朱元富, 贺文武, 李建兴, 等. 基于Bi-LSTM/Bi-GRU循环神经网络的锂电池SOC估计[J]. 储能科学与技术, 2021, 10(3): 1163-1176. |
ZHU Y F, HE W W, LI J X, et al. SOC estimation for Li-ion batteries based on Bi-LSTM and Bi-GRU[J]. Energy Storage Science and Technology, 2021, 10(3): 1163-1176. | |
16 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. La Jolla: Neural Information Processing Systems (nips), 2017: doi: 10.48550/arXiv.1706.03762. |
17 | HU C S, CHENG F J, MA L A, et al. State of charge estimation for lithium-ion batteries based on TCN-LSTM neural networks[J]. Journal of the Electrochemical Society, 2022, 169(3): 030544. |
18 | CHEN Z, ZHAO H Q, SHU X, et al. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter[J]. Energy, 2021, 228: doi: 10.1016/j.energy.2021.120630. |
[1] | Shuqin LIU, Xiaoyan WANG, Zhendong ZHANG, Zhenxia DUAN. Experimental and simulation research on liquid-cooling system of lithium-ion battery packs [J]. Energy Storage Science and Technology, 2023, 12(7): 2155-2165. |
[2] | Qingsong ZHANG, Fangwei BAO, Jiangjao NIU. Risk analysis method of thermal runaway gas explosion in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2263-2270. |
[3] | Yubo ZHANG, Youyuan WANG, Dongning HUANG, Ziyi WANG, Weigen CHEN. Prognostic method of lithium-ion battery lifetime degradation under various working conditions [J]. Energy Storage Science and Technology, 2023, 12(7): 2238-2245. |
[4] | Qinpei CHEN, Xuehui WANG, Wenzhong MI. Experiential study on the toxic and explosive characteristics of thermal runaway gas generated in electric-vehicle lithium-ion battery systems [J]. Energy Storage Science and Technology, 2023, 12(7): 2256-2262. |
[5] | Wenda ZAN, Rui ZHANG, Fei DING. Development and application of electrochemical models for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2302-2318. |
[6] | Maosong FAN, Mengmeng GENG, Guangjin ZHAO, Kai YANG, Fangfang WANG, Hao LIU. Research on battery sorting technology for echelon utilization based on multifrequency impedance [J]. Energy Storage Science and Technology, 2023, 12(7): 2202-2210. |
[7] | Yi WANG, Xuebing CHEN, Yuanxi WANG, Jieyun ZHENG, Xiaosong LIU, Hong LI. Overview of multilevel failure mechanism and analysis technology of energy storage lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2079-2094. |
[8] | Fang LI, Yongjun MIN, Yong ZHANG. Review of key technology research on the reliability of power lithium batteries based on big data [J]. Energy Storage Science and Technology, 2023, 12(6): 1981-1994. |
[9] | Yuxin CHEN, Jiamu YANG, Dongbo LI, Cheng LIAN, Honglai LIU. Numerical simulation of the vacuum drying process of cylindrical lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(6): 1957-1967. |
[10] | Birong TAN, Jianhua DU, Xianghu YE, Xin CAO, Chang QU. Overview of SOC estimation methods for lithium-ion batteries based on model [J]. Energy Storage Science and Technology, 2023, 12(6): 1995-2010. |
[11] | Luhao HAN, Ziyang WANG, Xiaolong HE, Chunshan HE, Xiaolong SHI, Bin YAO. The effect of water mist strategies on thermal runaway fire suppression of large-capacity NCM lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(5): 1664-1674. |
[12] | Jintao LI, Yue MU, Jing WANG, Jingyi QIU, Hai MING. Investigation of the structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(5): 1636-1654. |
[13] | Yongli YI, Ran YU, Wu LI, Yi JIN, Zheren DAI. Preparation of Mo, Al-doped Li7La3Zr2O12-based composite solid electrolyte and performance of all-solid-state batterys [J]. Energy Storage Science and Technology, 2023, 12(5): 1490-1499. |
[14] | Linze LI, Xiangwen ZHANG. SOH estimation for lithium-ion batteries based on combination of frequency impedance characteristics [J]. Energy Storage Science and Technology, 2023, 12(5): 1705-1712. |
[15] | Ni YANG, Yuefeng SU, Lian WANG, Ning LI, Liang MA, Chen ZHU. Research progress of focused ion beam microscopy in lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1283-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||