Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3423-3441.doi: 10.19799/j.cnki.2095-4239.2024.0320
• Energy Storage Materials and Devices • Previous Articles Next Articles
Fan XU1,2,3(), Xingjian DAI1, Youlong WANG2,3, Dongxu HU1,3, Hualiang ZHANG1,3, Haisheng CHEN1,3()
Received:
2024-04-11
Revised:
2024-04-24
Online:
2024-10-28
Published:
2024-10-30
Contact:
Haisheng CHEN
E-mail:xufan@iet.cn;chen_hs@iet.cn
CLC Number:
Fan XU, Xingjian DAI, Youlong WANG, Dongxu HU, Hualiang ZHANG, Haisheng CHEN. Research progress on permanent magnet machines for flywheel energy storage[J]. Energy Storage Science and Technology, 2024, 13(10): 3423-3441.
Table 1
Examples of permanent magnet machines for flywheel energy storage"
功率/kW | 转速/(r/min) | 难度值 | 类型 | 参考文献 |
---|---|---|---|---|
300 | 36000 | 6.2×105 | 永磁无刷直流电机 | [ |
75 | 60000 | 5.2×105 | 内转子永磁同步电机 | [ |
135 | 31500 | 3.6×105 | 表贴式永磁同步电机 | [ |
1000 | 10500 | 3.3×105 | 内置式永磁同步电机 | [ |
140 | 24000 | 2.8×105 | 内置式永磁同步电机 | [ |
200 | 20000 | 2.8×105 | 内嵌式永磁同步电机 | [ |
80 | 30000 | 2.7×105 | 表贴式永磁无刷直流电机 | [ |
2.3 | 150000 | 2.3×105 | 内转子永磁无刷直流电机 | [ |
100 | 20000 | 2×105 | 外转子永磁同步电机 | [ |
5000 | 2500 | 1.8×105 | 内置式永磁同步电机 | [ |
1.5 | 150000 | 1.8×105 | 圆环式内转子永磁同步电机 | [ |
7.6 | 50000 | 1.4×105 | 表贴式永磁同步电机 | [ |
20 | 30000 | 1.3×105 | 表贴式永磁无刷直流电机 | [ |
500 | 6000 | 1.3×105 | 内转子永磁同步电机 | [ |
200 | 9000 | 1.3×105 | 表贴式/内置式永磁电机 | [ |
500 | 5400 | 1.2×105 | 轴向永磁同步电机 | [ |
4 | 60000 | 1.2×105 | 一体式轴向永磁电机 | [ |
200 | 8000 | 1.1×105 | 轴向永磁电机 | [ |
30 | 20000 | 1.1×105 | 内置式Halbach永磁电机 | [ |
1000 | 2700 | 8.5×104 | 内置式永磁同步电机 | [ |
500 | 3600 | 8.0×104 | 内置式永磁同步电机 | [ |
22 | 12000 | 7.0×104 | 内置式永磁同步电机 | [ |
10 | 20000 | 6.3×104 | 轴向永磁电机 | [ |
8 | 18000 | 5.1×104 | 一体式表贴永磁同步电机 | [ |
100 | 5000 | 5×104 | 一体式无轴永磁电机 | [ |
17 | 10000 | 4.1×104 | 轴向永磁电机 | [ |
Table 2
Electromagnetic losses of permanent magnet machines"
功率/kW | 转速/(r/min) | 铜耗/W | 定子铁耗/W | 转子损耗/W | 参考文献 |
---|---|---|---|---|---|
130 | 31500 | 926.1 | 1000 | 143.8 | [ |
100 | 16500 | 911 | 728.1 | 25.7 | [ |
223 | 60000 | 515 | 2138 | 1075 | [ |
117 | 60000 | 810 | 1010 | 190 | [ |
40 | 18000 | 574.8 | 820.2 | 562.2 | [ |
223 | 1330 | 4020 | — | — | [ |
300 | 10000 | 1790 | 10107.3 | — | [ |
75 | 60000 | — | 3369 | — | [ |
200 | 21000 | — | 2300 | 450 | [ |
150 | 10000 | 2452 | 1167.4 | 344.5 | [ |
150 | 9000 | — | — | 616.1 | [ |
200 | 15000 | — | — | 1400 | [ |
1 | KHODADOOST ARANI A A, KARAMI H, GHAREHPETIAN G B, et al. Review of flywheel energy storage systems structures and applications in power systems and microgrids[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 9-18. DOI: 10.1016/j.rser.2016.11.166. |
2 | JI W M, HONG F, ZHAO Y Z, et al. Applications of flywheel energy storage system on load frequency regulation combined with various power generations: A review[J]. Renewable Energy, 2024, 223: 119975. DOI: 10.1016/j.renene.2024.119975. |
3 | AMIRYAR M, PULLEN K. A review of flywheel energy storage system technologies and their applications[J]. Applied Sciences, 2017, 7(3): 286. DOI: 10.3390/app7030286. |
4 | MOUSAVI G S M, FARAJI F, MAJAZI A, et al. A comprehensive review of flywheel energy storage system technology[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 477-490. DOI: 10.1016/j.rser.2016.09.060. |
5 | 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7): 133-140. DOI: 10.19595/j.cnki. 1000-6753.tces.2011.07.019. |
DAI X J, DENG Z F, LIU G, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 133-140. DOI: 10.19595/j.cnki.1000-6753.tces.2011.07.019. | |
6 | 戴兴建, 魏鲲鹏, 张小章, 等. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. |
DAI X J, WEI K P, ZHANG X Z, et al. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782. DOI: 10.12028/j.issn.2095-4239.2018.0083. | |
7 | 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12): 1-10. DOI: 10.19595/j.cnki.1000-6753.tces.2008.12.001. |
DENG Z G, WANG J S, WANG S Y, et al. Status of high Tc superconducting flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 1-10. DOI: 10. 19595/j.cnki.1000-6753.tces.2008.12.001. | |
8 | ANVARI B, LI X J, TOLIYAT H A, et al. A coreless permanent-magnet machine for a magnetically levitated shaft-less flywheel[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC). May 21-24, 2017, Miami, FL, USA. IEEE, 2017: 1-7. DOI: 10.1109/IEMDC.2017.8002365. |
9 | ZHU Z Y, ZHANG W, LI Y B, et al. Thermal analysis of axial permanent magnet flywheel machine based on equivalent thermal network method[J]. IEEE Access, 2021, 9: 33181-33188. DOI: 10.1109/ACCESS.2021.3060591. |
10 | 余志强, 张国民, 邱清泉, 等. 高温超导飞轮储能系统的发展现状[J]. 电工技术学报, 2013, 28(12): 109-118. DOI: 10.19595/j.cnki.1000-6753.tces.2013.12.015. |
YU Z Q, ZHANG G M, QIU Q Q, et al. Development status of magnetic levitation flywheel energy storage system based on high-temperature superconductor[J]. Transactions of China Electrotechnical Society, 2013, 28(12): 109-118. DOI: 10.19595/j.cnki.1000-6753.tces.2013.12.015. | |
11 | PEÑA-ALZOLA R, SEBASTIÁN R, QUESADA J, et al. Review of flywheel based energy storage systems[C]//2011 International Conference on Power Engineering, Energy and Electrical Drives. May 11-13, 2011, Malaga, Spain. IEEE, 2011: 1-6. DOI: 10.1109/PowerEng.2011.6036455. |
12 | ABRAHAMSSON J, HEDLUND M, KAMF T, et al. High-speed kinetic energy buffer: Optimization of composite shell and magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3012-3021. DOI: 10.1109/TIE.2013.2259782. |
13 | ARGHANDEH R, PIPATTANASOMPORN M, RAHMAN S. Flywheel energy storage systems for ride-through applications in a facility microgrid[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1955-1962. DOI: 10.1109/tsg.2012.2212468. |
14 | CAO H C, KOU B Q, ZHANG D, et al. Research on loss of high speed permanent magnet synchronous motor for flywheel energy storage[C]//2012 16th International Symposium on Electromagnetic Launch Technology. May 15-19, 2012, Beijing, China. IEEE, 2012: 1-6. DOI: 10.1109/EML.2012.6325045. |
15 | DÍAZ-GONZÁLEZ F, BIANCHI F D, SUMPER A, et al. Control of a flywheel energy storage system for power smoothing in wind power plants[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 204-214. DOI: 10.1109/TEC.2013.2292495. |
16 | GERADA D, MEBARKI A, BROWN N L, et al. High-speed electrical machines: Technologies, trends, and developments[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2946-2959. DOI: 10.1109/TIE.2013.2286777. |
17 | LEE H S, SHIN B Y, HAN S, et al. Compensation for the power fluctuation of the large scale wind farm using hybrid energy storage applications[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5701904. DOI: 10.1109/TASC.2011.2180881. |
18 | LU X M, IYER K L V, MUKHERJEE K, et al. Study of permanent magnet machine based flywheel energy storage system for peaking power series hybrid vehicle control strategy[C]//2013 IEEE Transportation Electrification Conference and Expo (ITEC). June 16-19, 2013, Detroit, MI, USA. IEEE, 2013: 1-7. DOI: 10.1109/ITEC.2013.6573470. |
19 | SUVIRE G O, MERCADO P E. Active power control of a flywheel energy storage system for wind energy applications[J]. IET Renewable Power Generation, 2012, 6(1): 9. DOI: 10.1049/iet-rpg.2010.0155. |
20 | SUVIRE G O, MOLINA M G, MERCADO P E. Improving the integration of wind power generation into AC microgrids using flywheel energy storage[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1945-1954. DOI: 10.1109/TSG.2012.2208769. |
21 | WANG B S, VENKATARAMANAN G. Dynamic voltage restorer utilizing a matrix converter and flywheel energy storage[J]. IEEE Transactions on Industry Applications, 2009, 45(1): 222-231. DOI: 10.1109/TIA.2008.2009507. |
22 | 鲍海静, 梁培鑫, 柴凤. 飞轮储能用高速永磁同步电机技术综述[J]. 微电机, 2014, 47(2): 64-72. DOI: 10.15934/j.cnki.micromotors. 2014.02.016. |
BAO H J, LIANG P X, CHAI F. Key technology of high speed permanent magnet synchronous motors for FESS[J]. Micromotors, 2014, 47(2): 64-72. DOI: 10.15934/j.cnki.micromotors.2014.02.016. | |
23 | CARDENAS R, PENA R, ASHER G M, et al. Control strategies for power smoothing using a flywheel driven by a sensorless vector-controlled induction machine operating in a wide speed range[J]. IEEE Transactions on Industrial Electronics, 2004, 51(3): 603-614. DOI: 10.1109/TIE.2004.825345. |
24 | 戈宝军, 罗前通, 王立坤, 等. 高速永磁同步电动机铁耗分析[J]. 电机与控制学报, 2020, 24(4): 32-39. DOI: 10.15938/j.emc.2020.04.004. |
GE B J, LUO Q T, WANG L K, et al. Analysis of iron losses of high-speed permanent magnet synchronous motor[J]. Electric Machines and Control, 2020, 24(4): 32-39. DOI: 10.15938/j.emc.2020.04.004. | |
25 | 张凤阁, 杜光辉, 王天煜, 等. 高速电机发展与设计综述[J]. 电工技术学报, 2016, 31(7): 1-18. DOI: 10.19595/j.cnki.1000-6753.tces. 2016.07.001. |
ZHANG F G, DU G H, WANG T Y, et al. Review on development and design of high speed machines[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 1-18. DOI: 10.19595/j.cnki.1000-6753.tces.2016.07.001. | |
26 | 朱熀秋, 陆荣华, 胡亚民, 等. 飞轮储能用Halbach阵列定子无铁芯无轴承永磁电机的设计[J]. 江苏大学学报(自然科学版), 2016, 37(6): 691-697. |
ZHU H Q, LU R H, HU Y M, et al. Design of coreless-stator bearingless permanent magnet motor with Halbach array for flywheel energy storage system[J]. Journal of Jiangsu University (Natural Science Edition), 2016, 37(6): 691-697. | |
27 | WANG X L, ZHONG Q C, DENG Z Q, et al. Current-controlled multiphase slice permanent magnetic bearingless motors with open-circuited phases: Fault-tolerant controllability and its verification[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2059-2072. DOI: 10.1109/TIE.2011.2161067. |
28 | WARBERGER B, KAELIN R, NUSSBAUMER T, et al. 50-$\hbox{N}\cdot\hbox{m}$/2500-W bearingless motor for high-purity pharmaceutical mixing[J]. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2236-2247. DOI: 10.1109/TIE. 2011. 2161657. |
29 | CHEN L, HOFMANN W. Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure[J]. IEEE Transactions on Industrial Electronics, 2012, 59(6): 2592-2600. DOI: 10.1109/TIE.2011.2163289. |
30 | VAN MILLINGEN R D, VAN MILLINGEN J D. Phase shift torquemeters for gas turbine development and monitoring[C]//ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition, June 3-6, 1991, Orlando, Florida, USA. 2015 DOI: 10.1115/91-GT-189. |
31 | CHEN Y G, ZANG B Q. Analysis of alternating flux density harmonics inside the rotor of a 1 MW high-speed interior permanent magnet synchronous machine used for flywheel energy storage systems[J]. Journal of Energy Storage, 2022, 55: 105664. DOI: 10.1016/j.est.2022.105664. |
32 | ZHAO S F, YE C Y. Research on low switching loss control strategy of high-speed FESS based on NPC three-level converter[J]. IEEE Transactions on Transportation Electrification, 2023, 9(1): 1403-1415. DOI: 10.1109/TTE.2022.3193737. |
33 | 邢军强, 王凤翔, 张殿海, 等. 高速永磁电机转子空气摩擦损耗研究[J]. 中国电机工程学报, 2010, 30(27): 14-19. DOI: 10.13334/j.0258-8013.pcsee.2010.27.003. |
XING J Q, WANG F X, ZHANG D H, et al. Research on rotor air friction loss of high-speed permanent magnet machines[J]. Proceedings of the CSEE, 2010, 30(27): 14-19. DOI: 10.13334/j.0258-8013.pcsee.2010.27.003. | |
34 | 高义冬. 飞轮储能用高速永磁同步电机的设计与分析[D]. 镇江: 江苏科技大学, 2014. |
GAO Y D. Design and analysis of high-speed permanent magnet synchronous motor for flywheel energy storage[D]. Zhenjiang: Jiangsu University of Science and Technology, 2014. | |
35 | HUYNH C, ZHENG L P, MCMULLEN P. Thermal performance evaluation of a high-speed flywheel energy storage system[C]//IECON 2007-33rd Annual Conference of the IEEE Industrial Electronics Society. November 5-8, 2007, Taipei, China. IEEE, 2007: 163-168. DOI: 10.1109/IECON.2007.4459898. |
36 | CHEN Y G, ZANG B Q, WANG H T, et al. Composite PM rotor design and alternating flux density harmonic component analysis of a 200 kW high-speed PMSM used in FESS[J]. IEEE Transactions on Industry Applications, 2023, 59(2): 1469-1480. DOI: 10.1109/TIA.2022.3218526. |
37 | 姚阳. 飞轮储能系统中高速永磁无刷直流电机的设计与充放电控制的仿真研究[D]. 杭州: 浙江大学, 2015. |
YAO Y. Design of high-speed permanent magnet brushless DC motor in flywheel energy storage system and simulation study on charge and discharge control[D]. Hangzhou: Zhejiang University, 2015. | |
38 | 周凤争. 高速永磁无刷直流电机转子涡流损耗的研究[D]. 杭州: 浙江大学, 2008. |
ZHOU F Z. Study on eddy current loss of rotor of high-speed permanent magnet brushless DC motor[D]. Hangzhou: Zhejiang University, 2008. | |
39 | 李杏. 飞轮储能用外转子高速永磁同步电机研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
LI X. Research on high-speed permanent magnet synchronous motor with outer rotor for flywheel energy storage[D]. Harbin: Harbin Institute of Technology, 2013. | |
40 | ZANG B Q, CHEN Y G. Multiobjective optimization and multiphysics design of a 5 MW high-speed IPMSM used in FESS based on NSGA-II[J]. IEEE Transactions on Energy Conversion, 2023, 38(2): 813-824. DOI: 10.1109/TEC.2022.3226872. |
41 | GAO Q X, WANG X L, ZHANG Y. Multi–physical-field characteristics modeling and structure optimization for kW-level ultra-high-speed PM motors with integrated support system[J]. Chinese Journal of Aeronautics, 2023, 36(4): 455-467. DOI: 10.1016/j.cja.2022.12.013. |
42 | NAGORNY A S, DRAVID N V, JANSEN R H, et al. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications[C]//IEEE International Conference on Electric Machines and Drives. May 15-15, 2005, San Antonio, TX, USA. IEEE, 2005: 635-641. DOI: 10.1109/IEMDC.2005.195790. |
43 | 洪兆峰. 飞轮储能用高速永磁无刷直流电机设计[D]. 杭州: 浙江大学, 2021. DOI: 10.27461/d.cnki.gzjdx.2021.000382. |
HONG Z F. Design of high-speed permanent magnet brushless DC motor for flywheel energy storage[D]. Hangzhou: Zhejiang University, 2021. DOI: 10.27461/d.cnki.gzjdx.2021.000382. | |
44 | 孟庆博, 王志强. 基于电流前馈的储能飞轮充放电功率控制[J]. 微特电机, 2022, 50(7): 29-33. DOI: 10.20026/j.cnki.ssemj.2022.0040. |
MENG Q B, WANG Z Q. Charging-discharging power control of energy storage flywheel based on current feedforward[J]. Small & Special Electrical Machines, 2022, 50(7): 29-33. DOI: 10.20026/j.cnki.ssemj.2022.0040. | |
45 | 秦庆雷. 飞轮储能用高速永磁电机损耗分析[D]. 天津: 天津大学, 2016.QIN Q L. Loss analysis of high-speed permanent magnet motor for flywheel energy storage[D]. Tianjin: Tianjin University, 2016. |
46 | SUN M X, XU Y L, CHEN S L. Research on electromagnetic system of large capacity energy storage flywheel[J]. IEEE Transactions on Magnetics, 2023, 59(5): 8100705. DOI: 10.1109/TMAG.2023.3239981. |
47 | ZHANG C, TSENG K J, NGUYEN T D, et al. Design and loss analysis of a high speed flywheel energy storage system based on axial-flux flywheel-rotor electric machines[C]//2010 Conference Proceedings IPEC. October 27-29, 2010, Singapore. IEEE, 2010: 886-891. DOI: 10.1109/IPECON.2010.5697091. |
48 | BOLUND B, BERNHOFF H, LEIJON M. Flywheel energy and power storage systems[J]. Renewable and Sustainable Energy Reviews, 2007, 11(2): 235-258. DOI: 10.1016/j.rser.2005.01.004. |
49 | JANG S M, YOU D J, KO K J, et al. Design and experimental evaluation of synchronous machine without iron loss using double-sided halbach magnetized PM rotor in high power FESS[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4337-4340. DOI: 10.1109/TMAG.2008.2001499. |
50 | 戴兴建, 姜新建, 王秋楠, 等. 1 MW/60 MJ飞轮储能系统设计与实验研究[J]. 电工技术学报, 2017, 32(21): 169-175. DOI: 10.19595/j.cnki.1000-6753.tces.161486. |
DAI X J, JIANG X J, WANG Q N, et al. The design and testing of a 1 MW/60 MJ flywheel energy storage power system[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 169-175. DOI: 10.19595/j.cnki.1000-6753.tces.161486. | |
51 | 戴兴建, 张超平, 王善铭, 等. 500kW飞轮储能电源系统设计与实验研究[J]. 电源技术, 2014, 38(6): 1123-1126. DOI: 10.3969/j.issn. 1002-087X.2014.06.042. |
DAI X J, ZHANG C P, WANG S M, et al. Design and experimental test of 500 kW flywheel energy storage power system[J]. Chinese Journal of Power Sources, 2014, 38(6): 1123-1126. DOI: 10.3969/j.issn.1002-087X.2014.06.042. | |
52 | 王江波, 赵国亮, 蒋晓春, 等. 飞轮储能用高速永磁同步电机设计[J]. 微特电机, 2013, 41(8): 20-22. DOI: 10.3969/j.issn.1004-7018. 2013.08.006. |
WANG J B, ZHAO G L, JIANG X C, et al. Contriving of high-speed PMSM for flywheel energy storage[J]. Small & Special Electrical Machines, 2013, 41(8): 20-22. DOI: 10.3969/j.issn. 1004-7018.2013.08.006. | |
53 | 周涛. 电动车辆再生制动用飞轮储能电机的研究[D]. 南京: 东南大学, 2015. |
ZHOU T. Research on flywheel energy storage motor for regenerative braking of electric vehicles[D]. Nanjing: Southeast University, 2015. | |
54 | FLORIS A, DAMIANO A, SERPI A. Design and performance assessment of an integrated flywheel energy storage systems based on an inner-rotor large-airgap SPM[C]//2020 International Conference on Electrical Machines (ICEM). August 23-26, 2020, Gothenburg, Sweden. IEEE, 2020: 633-639. DOI: 10.1109/ICEM49940.2020.9271069. |
55 | LI X J, ANVARI B, PALAZZOLO A, et al. A utility-scale flywheel energy storage system with a shaftless, hubless, high-strength steel rotor[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6667-6675. DOI: 10.1109/TIE.2017.2772205. |
56 | NAGAYA S, KASHIMA N, KAWASHIMA H, et al. Development of the axial gap type motor/generator for the flywheel with superconducting magnetic bearings[J]. Physica C: Superconductivity, 2003, 392: 764-768. DOI: 10.1016/S0921-4534(03)01009-8. |
57 | JAHNS T M, SOONG W L. Pulsating torque minimization techniques for permanent magnet AC motor drives-a review[J]. IEEE Transactions on Industrial Electronics, 1996, 43(2): 321-330. DOI: 10.1109/41.491356. |
58 | 邓秋玲, 黄守道, 刘婷, 等. 永磁电机齿槽转矩的研究分析[J]. 湖南大学学报(自然科学版), 2011, 38(3): 56-59. |
DENG Q L, HUANG S D, LIU T, et al. Study of cogging torque in permanent-magnet machines[J]. Journal of Hunan University (Natural Sciences), 2011, 38(3): 56-59. | |
59 | MORIMOTO S. Trend of permanent magnet synchronous machines[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(2): 101-108. DOI: 10.1002/tee.20116. |
60 | BARRERO F, DURAN M J. Recent advances in the design, modeling, and control of multiphase machines: Part I[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 449-458. DOI: 10.1109/TIE.2015.2447733. |
61 | DIANOV A, ANUCHIN A. Phase loss detection using voltage signals and motor models: A review[J]. IEEE Sensors Journal, 2021, 21(23): 26488-26502. DOI: 10.1109/JSEN.2021.3120887. |
62 | LEVI E. Multiphase electric machines for variable-speed applications[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 1893-1909. DOI: 10.1109/TIE.2008.918488. |
63 | LEVI E. Advances in converter control and innovative exploitation of additional degrees of freedom for multiphase machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(1): 433-448. DOI: 10.1109/TIE.2015.2434999. |
64 | 刘自程, 李永东, 郑泽东. 多相电机控制驱动技术研究综述[J]. 电工技术学报, 2017, 32(24): 17-29. DOI: 10.19595/j.cnki.1000-6753.tces.l70304. |
LIU Z C, LI Y D, ZHENG Z D. Control and drive techniques for multiphase machines: A review[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 17-29. DOI: 10.19595/j.cnki.1000-6753.tces.l70304. | |
65 | 陶涛, 赵文祥, 程明, 等. 多相电机容错控制及其关键技术综述[J]. 中国电机工程学报, 2019, 39(2): 316-326, 629. DOI: 10.13334/j.0258-8013.pcsee.181589. |
TAO T, ZHAO W X, CHENG M, et al. Review on fault-tolerant control of multi-phase machines and their key technologies[J]. Proceedings of the CSEE, 2019, 39(2): 316-326, 629. DOI: 10.13334/j.0258-8013.pcsee.181589. | |
66 | AKAY A, LEFLEY P. Torque ripple reduction method in a multiphase PM machine for No-fault and open-circuit fault-tolerant conditions[J]. Energies, 2021, 14(9): 2615. DOI: 10.3390/en14092615. |
67 | FALL O, NGUYEN N K, CHARPENTIER J F, et al. Variable speed control of a 5-phase permanent magnet synchronous generator including voltage and current limits in healthy and open-circuited modes[J]. Electric Power Systems Research, 2016, 140: 507-516. DOI: 10.1016/j.epsr.2016.05.024. |
68 | HABIB A, MOHD ZAINURI M A A, CHE H S, et al. A systematic review on current research and developments on coreless axial-flux permanent-magnet machines[J]. IET Electric Power Applications, 2022, 16(10): 1095-1116. DOI: 10.1049/elp2.12218. |
69 | POLATER N, TRICOLI P. Technical review of traction drive systems for light railways[J]. Energies, 2022, 15(9): 3187. DOI: 10.3390/en15093187. |
70 | RUBINO S, DORDEVIC O, ARMANDO E, et al. A novel matrix transformation for decoupled control of modular multiphase PMSM drives[J]. IEEE Transactions on Power Electronics, 2021, 36(7): 8088-8101. DOI: 10.1109/TPEL.2020.3043083. |
71 | 王晋. 多相永磁电机的理论分析及其控制研究[D]. 武汉: 华中科技大学, 2010. |
WANG J. Theoretical analysis and control research of multiphase permanent magnet motor[D]. Wuhan: Huazhong University of Science and Technology, 2010. | |
72 | 薛山, 温旭辉, 王又珑. 多相永磁同步电机多维控制技术[J]. 电工技术学报, 2008, 23(9): 65-69. DOI: 10.19595/j.cnki.1000-6753.tces.2008.09.010. |
XUE S, WEN X H, WANG Y L. Multi-dimensional control in multiphase permanent motor drives[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 65-69. DOI: 10.19595/j.cnki.1000-6753.tces.2008.09.010. | |
73 | 郝振洋. 六相永磁容错电机及其控制系统的设计和研究[D]. 南京: 南京航空航天大学, 2010. |
HAO Z Y. Design and research of six-phase permanent magnet fault-tolerant motor and its control system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010. | |
74 | TEYMOORI V, KAMPER M, WANG R J, et al. Sensorless control of dual three-phase permanent magnet synchronous machines—a review[J]. Energies, 2023, 16(3): 1326. DOI: 10.3390/en16031326. |
75 | 周长攀. 双三相永磁同步电机驱动及容错控制技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
ZHOU C P. Research on drive and fault-tolerant control technology of double three-phase permanent magnet synchronous motor[D]. Harbin: Harbin Institute of Technology, 2016. | |
76 | 周长攀, 杨贵杰, 苏健勇, 等. 基于正常解耦变换的双三相永磁同步电机缺相容错控制策略[J]. 电工技术学报, 2017, 32(3): 86-96. DOI: 10.19595/j.cnki.1000-6753.tces.2017.03.010. |
ZHOU C P, YANG G J, SU J Y, et al. The control strategy for dual three-phase PMSM based on normal decoupling transformation under fault condition due to open phases[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 86-96. DOI: 10. 19595/j.cnki.1000-6753.tces.2017.03.010. | |
77 | LI W C, LV J L, JIANG X J, et al. A fault-tolerant control method of 12-phase PMSM in FESS[C]//2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). June 3-6, 2019, Xi'an, China. IEEE, 2019: 269-273. DOI: 10.1109/PEDG.2019.8807479. |
78 | HOLM S R, POLINDER H, FERREIRA J A. Analytical modeling of a permanent-magnet synchronous machine in a flywheel[J]. IEEE Transactions on Magnetics, 2007, 43(5): 1955-1967. DOI: 10.1109/TMAG.2007.892791. |
79 | JANG S, CHOI J, CHO H, et al. Electromagnetic analysis of high speed machines with diametrically magnetized rotor for flywheel battery applications[C]//2006 IEEE International Magnetics Conference (INTERMAG). May 8-12, 2006, San Diego, CA, USA. IEEE, 2006: 972. DOI: 10.1109/INTMAG.2006.375438. |
80 | DONG J N, HUANG Y K, SHEN P Y, et al. An axial flux flywheel motor/generator for pulsed power application[C]//2012 IEEE Energy Conversion Congress and Exposition (ECCE). September 15-20, 2012, Raleigh, NC, USA. IEEE, 2012: 678-683. DOI: 10.1109/ECCE.2012.6342755. |
81 | YI J E, LEE K W, KIM B, et al. Micro flywheel energy storage system with axial flux machine[C]//2007 IEEE/ASME international conference on advanced intelligent mechatronics. September 4-7, 2007, Zurich. IEEE, 2007: 1-6. DOI: 10.1109/AIM.2007.4412409. |
82 | CHAN C C. Axial-field electrical Machines-Design and applications[J]. IEEE Power Engineering Review, 1987, PER-7(6): 49-50. DOI: 10.1109/MPER.1987.5527133. |
83 | LIU C T, CHIANG T S, ZAMORA J F D, et al. Field-oriented control evaluations of a single-sided permanent magnet axial-flux motor for an electric vehicle[J]. IEEE Transactions on Magnetics, 2003, 39(5): 3280-3282. DOI: 10.1109/TMAG.2003.816154. |
84 | KAMPER M J, WANG R J, ROSSOUW F G. Analysis and performance of axial flux permanent-magnet machine with air-cored nonoverlapping concentrated stator windings[C]//IEEE Transactions on Industry Applications. September 19, 2008, IEEE, 2008: 1495-1504. DOI: 10.1109/TIA.2008.2002183. |
85 | ZHANG W Y, WANG J P, ZHU P F, et al. A novel vehicle-mounted magnetic suspension flywheel battery with a virtual inertia spindle[J]. IEEE Transactions on Industrial Electronics, 2022, 69(6): 5973-5983. DOI: 10.1109/TIE.2021.3088375. |
86 | 朱志莹, 朱海浪, 邵淋晶, 等. 用于飞轮储能系统的轴向分相电机的电磁分析与优化设计[J]. 微电机, 2022, 55(3): 34-39. DOI: 10.15934/j.cnki.micromotors.2022.03.005. |
ZHU Z Y, ZHU H L, SHAO L J, et al. Electromagnetic analysis and optimization design of axial split-phase machine for flywheel energy storage system[J]. Micromotors, 2022, 55(3): 34-39. DOI: 10.15934/j.cnki.micromotors.2022.03.005. | |
87 | CHEN F G, ZHANG L T, JIN Y X, et al. Simultaneous enhancement of the coercivity and remanence at high temperatures in a sintered Nd-Fe-B magnet after grain boundary diffusion with Dy60Co40 alloy[J]. Materials Characterization, 2018, 144: 547-553. DOI: 10.1016/j.matchar.2018.08.012. |
88 | 张凤阁, 杜光辉, 王天煜, 等. 高速永磁电机转子不同保护措施的强度分析[J]. 中国电机工程学报, 2013, 33(S1): 195-202. DOI: 10.13334/j.0258-8013.pcsee.2013.s1.031. |
ZHANG F G, DU G H, WANG T Y, et al. Strength analysis of different protection measures for high-speed permanent magnet motor rotor[J]. Proceedings of the CSEE, 2013, 33(S1): 195-202. DOI: 10.13334/j.0258-8013.pcsee.2013.s1.031. | |
89 | 向丽君, MCGUINESS P, MOTTRAM R S, 等. 镝氢化物掺杂钕铁硼稀土永磁体的研究[J]. 中国稀土学报, 2014, 32(5): 555-562. DOI: 10.11785/S1000-4343.20140505. |
XIANG L J, MCGUINESS P, MOTTRAM R S, et al. Nd-Fe-B sintered magnets with dysprosium hydride addition[J]. Journal of the Chinese Society of Rare Earths, 2014, 32(5): 555-562. DOI: 10.11785/S1000-4343.20140505. | |
90 | CHEN F G. Recent progress of grain boundary diffusion process of Nd-Fe-B magnets[J]. Journal of Magnetism and Magnetic Materials, 2020, 514: 167227. DOI: 10.1016/j.jmmm.2020.167227. |
91 | 董剑宁, 黄允凯, 金龙, 等. 高速永磁电机设计与分析技术综述[J]. 中国电机工程学报, 2014, 34(27): 4640-4653. DOI: 10.13334/j.0258-8013.pcsee.2014.27.011. |
DONG J N, HUANG Y K, JIN L, et al. Review on high speed permanent magnet machines including design and analysis technologies[J]. Proceedings of the CSEE, 2014, 34(27): 4640-4653. DOI: 10.13334/j.0258-8013.pcsee.2014.27.011. | |
92 | MATSUOKA K. Development trend of the permanent magnet synchronous motor for railway traction[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2(2): 154-161. DOI: 10.1002/tee.20121. |
93 | MCCALLUM R W, LEWIS L, SKOMSKI R, et al. Practical aspects of modern and future permanent magnets[J]. Annual Review of Materials Research, 2014, 44: 451-477. DOI: 10.1146/annurev-matsci-070813-113457. |
94 | 丁鸿昌, 肖林京, 张华宇, 等. 高速永磁电机转子护套过盈配合量计算及应力分析[J]. 机械设计与研究, 2011, 27(5): 95-98. DOI: 10.13952/j.cnki.jofmdr.2011.05.032. |
DING H C, XIAO L J, ZHANG H Y, et al. Interference fit calculation and stress analysis for rotor sleeve of high-speed permanent magnet electric machine[J]. Machine Design & Research, 2011, 27(5): 95-98. DOI: 10.13952/j.cnki.jofmdr.2011.05.032. | |
95 | PAULIDES J J H, JEWELL G W, HOWE D. An evaluation of alternative stator lamination materials for a high-speed, 1.5 MW, permanent magnet generator[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2041-2043. DOI: 10.1109/TMAG.2004.832172. |
96 | HUYNH C, ZHENG L, ACHARYA D. Losses in high speed permanent magnet machines used in microturbine applications[J]. Journal of Engineering for Gas Turbines Power, 2009, 131(2). DOI: 10.1016/j.ijengsci.2007.11.005. |
97 | 姚阳, 方攸同, 董凡, 等. 飞轮储能系统中高速电机转子的分析设计[J]. 机电工程, 2014, 31(10): 1306-1310. DOI: 10.3969/j.issn.1001-4551.2014.10.016. |
YAO Y, FANG Y T, DONG F, et al. Analysis and design of the rotor of high speed machine for flywheel energy storage system[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(10): 1306-1310. DOI: 10.3969/j.issn.1001-4551.2014.10.016. | |
98 | DONG J N, HUANG Y K, JIN L, et al. Thermal optimization of a high-speed permanent magnet motor[J]. IEEE Transactions on Magnetics, 2014, 50(2): 7018504. DOI: 10.1109/TMAG.2013.2285017. |
99 | 陈萍, 唐任远, 佟文明, 等. 高功率密度永磁同步电机永磁体涡流损耗分布规律及其影响[J]. 电工技术学报, 2015, 30(6): 1-9. DOI: 10.19595/j.cnki.1000-6753.tces.2015.06.001. |
CHEN P, TANG R Y, TONG W M, et al. Permanent magnet eddy current loss and its influence of high power density permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 1-9. DOI: 10.19595/j.cnki.1000-6753.tces. 2015.06.001. | |
100 | SANADA M, HIRAMOTO K, MORIMOTO S, et al. Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement[J]. IEEE Transactions on Industry Applications, 2004, 40(4): 1076-1082. DOI: 10.1109/TIA.2004.830745. |
101 | CHAITHONGSUK S, NAHID-MOBARAKEH B, TAKORABET N, et al. Optimal design of PM motors to achieve efficient flux weakening strategy in variable speed control applications[C]//The XIX International Conference on Electrical Machines-ICEM. September 6-8, 2010, Rome, Italy. IEEE, 2010: 1-6. DOI: 10.1109/ICELMACH.2010.5607858. |
102 | DUAN S Y, ZHOU L B, WANG J. Flux weakening mechanism of interior permanent magnet synchronous machines with segmented permanent magnets[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 0500105. DOI: 10.1109/TASC. 2013.2280847. |
103 | WANG X J, YANG K, PAN Z C. Research on permanent magnet synchronous motor with segmented permanent magnet used for spindle[C]//2015 18th International Conference on Electrical Machines and Systems (ICEMS). October 25-28, 2015, Pattaya, Thailand. IEEE, 2015: 200-203. DOI: 10.1109/ICEMS. 2015. 7385026. |
104 | DU Z S, LIPO T A. Interior permanent magnet machines with rare earth and ferrite permanent magnets[C]//2017 IEEE International Electric Machines and Drives Conference (IEMDC). May 21-24, 2017, Miami, FL, USA. IEEE, 2017: 1-8. DOI: 10.1109/IEMDC.2017.8002189. |
105 | CALFO R M, SMITH M B, TESSARO J E. High-speed generators for power-dense, medium-power, gas turbine generator sets[J]. Naval Engineers Journal, 2007, 119(2): 63-81. DOI: 10.1111/j.0028-1425.2007.00020.x. |
106 | HALBACH K. Strong rare earth cobalt quadrupoles[J]. IEEE Transactions on Nuclear Science, 1979, 26(3): 3882-3884. DOI: 10.1109/TNS.1979.4330638. |
107 | ZHU Z Q, HOWE D. Halbach permanent magnet machines and applications: A review[J]. IEE Proceedings-Electric Power Applications, 2001, 148(4): 299. DOI: 10.1049/ip-epa: 20010479. |
108 | JANG S M, JEONG S S, RYU D W, et al. Comparison of three types of PM brushless machines for an electro-mechanical battery[J]. IEEE Transactions on Magnetics, 2000, 36(5): 3540-3543. DOI: 10.1109/20.908892. |
109 | LUISE F, TESSAROLO A, AGNOLET F, et al. A high-performance 640-kW 10.000-rpm Halbach-array PM slotless motor with active magnetic bearings. Part I: Preliminary and detailed design[C]//2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion. June 18-20, 2014, Ischia, Italy. IEEE, 2014: 1237-1244. DOI: 10.1109/SPEEDAM.2014.6871944. |
110 | 朱熀秋, 陈雷刚, 李亚伟, 等. Halbach阵列无轴承永磁电机有限元分析[J]. 电机与控制学报, 2013, 17(4): 45-49. DOI: 10.15938/j.emc.2013.04.013. |
ZHU H Q, CHEN L G, LI Y W, et al. Finite element analysis of bearingless permanent magnet motors with Halbach array[J]. Electric Machines and Control, 2013, 17(4): 45-49. DOI: 10. 15938/j.emc.2013.04.013. | |
111 | 寇宝泉, 曹海川, 李伟力, 等. 新型双层Halbach永磁阵列的解析分析[J]. 电工技术学报, 2015, 30(10): 68-76. DOI: 10.19595/j.cnki.1000-6753.tces.2015.10.011. |
KOU B Q, CAO H C, LI W L, et al. Analytical analysis of A novel double layer halbach permanent magnet array[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 68-76. DOI: 10.19595/j.cnki.1000-6753.tces.2015.10.011. | |
112 | FILATOV A V, MASLEN E H. Passive magnetic bearing for flywheel energy storage systems[J]. IEEE Transactions on Magnetics, 2001, 37(6): 3913-3924. DOI: 10.1109/20.966127. |
113 | MURAKAMI K, KOMORI M, MITSUDA H, et al. Design of an energy storage flywheel system using permanent magnet bearing (PMB) and superconducting magnetic bearing (SMB)[J]. Cryogenics, 2007, 47(4): 272-277. DOI: 10.1016/j.cryogenics. 2007.03.001. |
114 | MURAKAMI K, KOMORI M, MITSUDA H. Flywheel energy storage system using SMB and PMB[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2146-2149. DOI: 10. 1109/TASC.2007.898894. |
115 | MITSUDA H, INOUE A, NAKAYA B, et al. Improvement of energy storage flywheel system with SMB and PMB and its performances[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 2091-2094. DOI: 10.1109/TASC.2009.2019533. |
116 | 乔峰. 飞轮储能用高速永磁同步电机设计与分析[D]. 沈阳: 沈阳工业大学, 2023. DOI: 10.27322/d.cnki.gsgyu.2023.001424. |
QIAO F. Design and analysis of high-speed permanent magnet synchronous motor for flywheel energy storage[D]. Shenyang: Shenyang University of Technology, 2023. DOI: 10.27322/d.cnki.gsgyu.2023.001424. | |
117 | SIM K, LEE Y B, JANG S M, et al. Thermal analysis of high-speed permanent magnet motor with cooling flows supported on gas foil bearings: Part I-coupled thermal and loss modeling[J]. Journal of Mechanical Science and Technology, 2015, 29(12): 5469-5476. DOI: 10.1007/s12206-015-1148-0. |
118 | QIU H B, ZHAO X F, WEI Y Q, et al. Study on permanent magnet thickness of high-speed permanent magnet generator[J]. Electrical Engineering, 2019, 101(2): 499-506. DOI: 10.1007/s00202-019-00799-5. |
119 | 卓亮, 孙鲁, 施道龙, 等. 考虑温度变化的高温高速永磁电机转子涡流损耗半解析模型及实验验证[J]. 中国电机工程学报, 2021, 41(24): 8305-8315. DOI: 10.13334/j.0258-8013.pcsee.211789. |
ZHUO L, SUN L, SHI D L, et al. Semi-analytical model and experimental verification of rotor eddy current loss of high temperature high speed permanent magnet machine considering temperature change[J]. Proceedings of the CSEE, 2021, 41(24): 8305-8315. DOI: 10.13334/j.0258-8013.pcsee. 211789. | |
120 | LIANG Y P, ZHAO F C, XU K W, et al. Analysis of copper loss of permanent magnet synchronous motor with formed transposition winding[J]. IEEE Access, 2021, 9: 101105-101114. DOI: 10.1109/ACCESS.2021.3094833. |
121 | 王成, 白国长, 张宇. 飞轮储能用永磁同步电机温度场分析[J]. 重庆理工大学学报(自然科学), 2024, 38(2): 148-153. |
WANG C, BAI G C, ZHANG Y. Temperature field analysis of permanent magnet synchronous motor for flywheel energy storage[J]. Journal of Chongqing University of Technology (Natural Science), 2024, 38(2): 148-153. | |
122 | 孔晓光, 王凤翔, 徐云龙, 等. 高速永磁电机铁耗的分析和计算[J]. 电机与控制学报, 2010, 14(9): 26-30. DOI: 10.15938/j.emc. 2010.09.010. |
KONG X G, WANG F X, XU Y L, et al. Analysis and calculation of iron losses of high-speed permanent magnet machines[J]. Electric Machines and Control, 2010, 14(9): 26-30. DOI: 10. 15938/j.emc.2010.09.010. | |
123 | ZHOU Y, TIAN L, GAO S H, et al. Design and testing of CFRP sleeve for a high-speed permanent magnet synchronous motor with surface-mounted rotor[J]. Journal of Mechanical Science and Technology, 2021, 35(1): 221-230. DOI: 10.1007/s12206-020-1221-1. |
124 | JEONG T C, KIM W H, KIM M J, et al. Current harmonics loss analysis of 150-kW traction interior permanent magnet synchronous motor through co-analysis of d-q axis current control and finite element method[J]. IEEE Transactions on Magnetics, 2013, 49(5): 2343-2346. DOI: 10.1109/TMAG. 2013.2246552. |
125 | WANG G J, WANG P. Rotor loss analysis of PMSM in flywheel energy storage system as uninterruptable power supply[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 0609905. DOI: 10.1109/TASC.2016.2594826. |
126 | LI W L, WU Z G, TANG H Y, et al. Research on multi-physical fields of high-power PMSM/G used for FESS during the process of controllable charging and uncontrollable discharging[J]. IEEE Transactions on Energy Conversion, 2020, 35(1): 454-461. DOI: 10.1109/TEC.2019.2939226. |
127 | 江善林. 高速永磁同步电机的损耗分析与温度场计算[D]. 哈尔滨: 哈尔滨工业大学, 2010. |
JIANG S L. Loss analysis and temperature field calculation of high-speed permanent magnet synchronous motor[D]. Harbin: Harbin Institute of Technology, 2010. | |
128 | BAUER D, MAMUSCHKIN P, REUSS H C, et al. Influence of parallel wire placement on the AC copper losses in electrical machines[C]//2015 IEEE International Electric Machines & Drives Conference (IEMDC). May 10-13, 2015, Coeur d'Alene, ID, USA. IEEE, 2015: 1247-1253. DOI: 10.1109/IEMDC. 2015.7409221. |
129 | MELLOR P, WROBEL R, SALT D, et al. Experimental and analytical determination of proximity losses in a high-speed PM machine[C]//2013 IEEE Energy Conversion Congress and Exposition. September 15-19, 2013, Denver, CO, USA. IEEE, 2013: 3504-3511. DOI: 10.1109/ECCE.2013.6647162. |
130 | AL EIT M, BOUILLAULT F, MARCHAND C, et al. 2-D reduced model for eddy currents calculation in litz wire and its application for switched reluctance machine[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7401304. DOI: 10.1109/TMAG.2015.2486838. |
131 | RIOS M, VENKATARAMANAN G, MUETZE A. Foil conductor concentrated coil windings for modular permanent magnet AC machines[C]//2017 IEEE Energy Conversion Congress and Exposition (ECCE). October 1-5, 2017, Cincinnati, OH, USA. IEEE, 2017: 1191-1196. DOI: 10.1109/ECCE.2017.8095924. |
132 | DOWELL P L. Effects of eddy currents in transformer windings[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(8): 1387. DOI: 10.1049/piee.1966.0236. |
133 | NAN X, SULLIVAN C R. An improved calculation of proximity-effect loss in high-frequency windings of round conductors[C]//IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03. June 15-19, 2003, Acapulco, Mexico. IEEE, 2003: 853-860. DOI: 10.1109/PESC.2003.1218168. |
134 | NALAKATH S, PREINDL M, BILGIN B, et al. Modeling and analysis of AC resistance of a permanent magnet machine for online estimation purposes[C]//2015 IEEE Energy Conversion Congress and Exposition (ECCE). September 20-24, 2015, Montreal, QC, Canada. IEEE, 2015: 314-319. DOI: 10.1109/ECCE.2015.7309704. |
135 | REDDY P B, JAHNS T M, BOHN T P. Modeling and analysis of proximity losses in high-speed surface permanent magnet machines with concentrated windings[C]//2010 IEEE Energy Conversion Congress and Exposition. September 12-16, 2010, Atlanta, GA, USA. IEEE, 2010: 996-1003. DOI: 10.1109/ECCE. 2010.5617877. |
136 | 孔晓光, 王凤翔, 邢军强. 高速永磁电机的损耗计算与温度场分析[J]. 电工技术学报, 2012, 27(9): 166-173. DOI: 10.19595/j.cnki.1000-6753.tces.2012.09.023. |
KONG X G, WANG F X, XING J Q. Losses calculation and temperature field analysis of high speed permanent magnet machines[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 166-173. DOI: 10.19595/j.cnki.1000-6753.tces. 2012.09.023. | |
137 | 熊博文. 基于变频器SVPWM供电下的高速永磁同步电机铁耗仿真及分析[J]. 机电工程技术, 2022, 51(6): 162-167, 271. DOI: 10.3969/j.issn.1009-9492.2022.06.039. |
XIONG B W. Simulation and analysis of iron loss of high-speed permanent magnet synchronous motor based on inverter SVPWM power supply[J]. Mechanical & Electrical Engineering Technology, 2022, 51(6): 162-167, 271. DOI: 10.3969/j.issn. 1009-9492.2022.06.039. | |
138 | CHEN W, WU G C, FANG Y T, et al. Thermal optimization of a totally enclosed forced ventilated permanentmagnet traction motor using lumped parameter and partial computational fluid dynamics modeling[J]. Journal of Zhejiang University: Science A, 2018, 19(11): 878-888. DOI: 10.1631/jzus.A1700649. |
139 | 王晓远, 高鹏, 赵玉双. 电动汽车用高功率密度电机关键技术[J]. 电工技术学报, 2015, 30(6): 53-59. DOI: 10.19595/j.cnki.1000-6753.tces.2015.06.007. |
WANG X Y, GAO P, ZHAO Y S. Key technology of high power density motors in electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 53-59. DOI: 10.19595/j.cnki.1000-6753.tces.2015.06.007. | |
140 | TAKAHASHI I, KOGANEZAWA T, SU G, et al. A super high speed PM motor drive system by a quasi-current source inverter[C]//Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting. October 2-8, 1993, Toronto, Ontario, Canada. IEEE, 1993: 657-662. DOI: 10.1109/IAS.1993.298881. |
141 | KOLANO R, KRYKOWSKI K, KOLANO-BURIAN A, et al. Amorphous soft magnetic materials for the stator of a novel high-speed PMBLDC motor[J]. IEEE Transactions on Magnetics, 2013, 49(4): 1367-1371. DOI: 10.1109/TMAG. 2012.2234757. |
142 | WANG Z, ENOMOTO Y, MASAKI R, et al. Development of a high speed motor using amorphous metal cores[C]//8th International Conference on Power Electronics-ECCE Asia. May 30-June 3, 2011, Jeju, Korea (South). IEEE, 2011: 1940-1945. DOI: 10.1109/ICPE.2011.5944426. |
143 | OKAMOTO S, DENIS N, KATO Y, et al. Core loss reduction of an interior permanent-magnet synchronous motor using amorphous stator core[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2261-2268. DOI: 10.1109/TIA. 2016.2532279. |
144 | LI H X, HUANG Z Y, LI G, et al. Review of soft magnetic composite permanent magnet motor[C]//Proceedings of the International Symposium on Big Data and Artificial Intelligence. ACM, 2018. DOI: 10.1145/3305275.3305334. |
145 | BERTOTTI G. General properties of power losses in soft ferromagnetic materials[J]. IEEE Transactions on Magnetics, 1988, 24(1): 621-630. DOI: 10.1109/20.43994. |
146 | BOGLIETTI A, CAVAGNINO A, LAZZARI M, et al. Predicting iron losses in soft magnetic materials with arbitrary voltage supply: An engineering approach[J]. IEEE Transactions on Magnetics, 2003, 39(2): 981-989. DOI: 10.1109/TMAG.2003.808599. |
147 | 余莉, 胡虔生, 易龙芳, 等. 高速永磁无刷直流电机铁耗的分析和计算[J]. 电机与控制应用, 2007, 34(4): 10-14, 32. DOI: 10.3969/j.issn.1673-6540.2007.04.003. |
YU L, HU Q S, YI L F, et al. Analysis and calculation of the iron losses of high speed permanent motors[J]. Electric Machines & Control Application, 2007, 34(4): 10-14, 32. DOI: 10.3969/j.issn.1673-6540.2007.04.003. | |
148 | ZHANG Y, GUAN R, PILLAY P, et al. General core loss models on a magnetic lamination[C]//2009 IEEE International Electric Machines and Drives Conference. May 3-6, 2009, Miami, FL, USA. IEEE, 2009: 1529-1534. DOI: 10.1109/IEMDC.2009.5075406. |
149 | SHEN J X, HAN T, YAO L, et al. Is higher resistivity of magnet beneficial to reduce rotor eddy current loss in high-speed permanent magnets AC machines?[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2074-2077, 2078. |
150 | 周凤争, 沈建新, 林瑞光. 从电机设计的角度减少高速永磁电机转子损耗[J]. 浙江大学学报(工学版), 2007, 41(9): 1587-1591. DOI: 10.3785/j.issn.1008-973X.2007.09.032. |
ZHOU F Z, SHEN J X, LIN R G. Reduction of rotor loss in high-speed permanent magnet motors by design method[J]. Journal of Zhejiang University (Engineering Science), 2007, 41(9): 1587-1591. DOI: 10.3785/j.issn.1008-973X.2007.09.032. | |
151 | 周凤争, 沈建新, 王凯. 转子结构对高速无刷电机转子涡流损耗的影响[J]. 浙江大学学报(工学版), 2008, 42(9): 1587-1590. DOI: 10.3785/j.issn.1008-973X.2008.09.022. |
ZHOU F Z, SHEN J X, WANG K. Influence of rotor structure on rotor eddy-current loss in high-speed permanent magnet brushless DC motors[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(9): 1587-1590. DOI: 10.3785/j.issn.1008-973X.2008.09.022. | |
152 | 沈建新, 郝鹤, 袁承. 高速永磁无刷电机转子护套周向开槽的有限元分析[J]. 中国电机工程学报, 2012, 32(36): 53-60, 14. DOI: 10.13334/j.0258-8013.pcsee.2012.36.010. |
SHEN J X, HAO H, YUAN C. FEA study on circumferential grooves on rotor retaining sleeve of high-speed PM brushless motors[J]. Proceedings of the CSEE, 2012, 32(36): 53-60, 14. DOI: 10.13334/j.0258-8013.pcsee.2012.36.010. | |
153 | ZHOU F, SHEN J, FEI W, et al. Study of retaining sleeve and conductive shield and their influence on rotor loss in high-speed PM BLDC motors[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3398-3400. DOI: 10.1109/TMAG.2006.879434. |
154 | ZHU Z Q, NG K, SCHOFIELD N, et al. Improved analytical modelling of rotor eddy current loss in brushless machines equipped with surface-mounted permanent magnets[J]. IEE Proceedings-Electric Power Applications, 2004, 151(6): 641. DOI: 10.1049/ip-epa: 20040546. |
155 | WU L J, ZHU Z Q, STATON D, et al. Analytical modeling and analysis of open-circuit magnet loss in surface-mounted permanent-magnet machines[J]. IEEE Transactions on Magnetics, 2012, 48(3): 1234-1247. DOI: 10.1109/TMAG. 2011.2157351. |
156 | CHEN L, WANG J B, NAIR S S. An analytical method for predicting 3-D eddy current loss in permanent magnet machines based on generalized image theory[J]. IEEE Transactions on Magnetics, 2016, 52(6): 8103311. DOI: 10.1109/TMAG.2015.2500878. |
157 | NAIR S S, WANG J B, CHEN L, et al. Prediction of 3-D high-frequency eddy current loss in rotor magnets of SPM machines[J]. IEEE Transactions on Magnetics, 2016, 52(9): 8107910. DOI: 10.1109/TMAG.2016.2574779. |
158 | NAIR S S, CHEN L, WANG J B, et al. Computationally efficient 3D analytical magnet loss prediction in surface mounted permanent magnet machines[J]. IET Electric Power Applications, 2017, 11(1): 9-18. DOI: 10.1049/iet-epa.2016.0079. |
159 | KEFALAS T D, KLADAS A G. Finite element transient thermal analysis of PMSM for aerospace applications[C]//2012 XXth International Conference on Electrical Machines. September 2-5, 2012, Marseille, France. IEEE, 2012: 2566-2572. DOI: 10.1109/ICElMach.2012.6350246. |
160 | 王鹏举. 基于磁热耦合的高速永磁电机损耗和温升研究[D]. 石家庄: 河北科技大学, 2023. DOI: 10.27107/d.cnki.ghbku.2023.000684. |
WANG P J. Study on loss and temperature rise of high-speed permanent magnet motor based on magnetothermal coupling[D]. Shijiazhuang: Hebei University of Science and Technology, 2023. DOI: 10.27107/d.cnki.ghbku.2023.000684. | |
161 | MELLOR P H, ROBERTS D, TURNER D R. Lumped parameter thermal model for electrical machines of TEFC design[J]. IEE Proceedings B Electric Power Applications, 1991, 138(5): 205. DOI: 10.1049/ip-b.1991.0025. |
162 | GHAHFAROKHI P S, BELAHCEN A, KALLASTE A, et al. Thermal analysis of a SynRM using a thermal network and a hybrid model[C]//2018 XIII International Conference on Electrical Machines (ICEM). September 3-6, 2018, Alexandroupoli, Greece. IEEE, 2018: 2682-2688. DOI: 10.1109/ICELMACH.2018.8507002. |
163 | XIAO S, GRIFFO A. Online thermal parameter identification for permanent magnet synchronous machines[J]. IET Electric Power Applications, 2020, 14(12): 2340-2347. DOI: 10.1049/iet-epa.2020.0119. |
164 | STUMBERGER B, SEME S, PRAUNSEIS Z, et al. Electromagnetic and thermal design of totally enclosed non-ventilated synchronous generator with interior permanent magnets[C]//2017 International Conference on Modern Electrical and Energy Systems (MEES). November 15-17, 2017, Kremenchuk, Ukraine. IEEE, 2017: 160-163. DOI: 10.1109/MEES.2017.8248878. |
165 | KOLONDZOVSKI Z, BELAHCEN A, ARKKIO A. Comparative thermal analysis of different rotor types for a high-speed permanent-magnet electrical machine[J]. IET Electric Power Applications, 2009, 3(4): 279. DOI: 10.1049/iet-epa.2008.0208. |
166 | LIANG D W, ZHU Z Q, FENG J H, et al. Influence of critical parameters in lumped-parameter thermal models for electrical machines[C]//2019 22nd International Conference on Electrical Machines and Systems (ICEMS). August 11-14, 2019, Harbin, China. IEEE, 2019: 1-6. DOI: 10.1109/ICEMS.2019.8921846. |
167 | 郭保成. 高速盘式永磁电机的设计及多物理场分析[D]. 南京: 东南大学, 2017. |
GUO B C. Design and multi-physical field analysis of high-speed disc permanent magnet motor[D]. Nanjing: Southeast University, 2017. | |
168 | JUNGREUTHMAYER C, BAUML T, WINTER O, et al. A detailed heat and fluid flow analysis of an internal permanent magnet synchronous machine by means of computational fluid dynamics[J]. IEEE Transactions on Industrial Electronics, 2012, 59(12): 4568-4578. DOI: 10.1109/TIE.2011.2176696. |
169 | TAN Z, SONG X G, JI B, et al. 3D thermal analysis of a permanent magnet motor with cooling fans[J]. Journal of Zhejiang University: Science A, 2015, 16(8): 616-621. DOI: 10.1631/jzus.a1400293. |
170 | XU Z, ROCCA A L, PICKERING S J, et al. Mechanical and thermal design of an aeroengine starter/generator[C]//2015 IEEE International Electric Machines & Drives Conference (IEMDC). May 10-13, 2015, Coeur d'Alene, ID, USA. IEEE, 2015: 1607-1613. DOI: 10.1109/IEMDC.2015.7409278. |
171 | CAVAZZUTI M, GASPARI G, PASQUALE S, et al. Thermal management of a Formula E electric motor: Analysis and optimization[J]. Applied Thermal Engineering, 2019, 157: 113733. DOI: 10.1016/j.applthermaleng.2019.113733. |
172 | WANG S N, LI Y H, LI Y Z, et al. Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging[J]. Applied Thermal Engineering, 2016, 109: 251-260. DOI: 10.1016/j.applthermaleng.2016.08.036. |
173 | 顾国彪, 阮琳. 蒸发冷却技术在水轮发电机领域的应用和发展[J]. 中国电机工程学报, 2014, 34(29): 5112-5119. DOI: 10.13334/j.0258-8013.pcsee.2014.29.013. |
GU G B, RUAN L. Applications and developments of the evaporative cooling technology in the field of hydrogenerators[J]. Proceedings of the CSEE, 2014, 34(29): 5112-5119. DOI: 10.13334/j.0258-8013.pcsee.2014.29.013. | |
174 | LI Z G, RUAN L, TANG L Y. Heat transfer characteristics of spray evaporative cooling system for large electrical machines[C]//2015 18th International Conference on Electrical Machines and Systems (ICEMS). October 25-28, 2015, Pattaya, Thailand. IEEE, 2015: 1740-1743. DOI: 10.1109/ICEMS.2015.7385321. |
175 | A V J, Cody M, Aaron L. COOLED FLYWHEEL APPARATUS: United States, 20140124172[P]. 2014-05-08. |
176 | ARSENEAUX J, ANSBIGIAN D, DESANTIS D, et al. Self-pumping flywheel cooling system: US9856941[P]. 2018-01-02. |
177 | 沈军, 陈学军, 崔志新. 应用流固耦合分析车用永磁同步电机轴内油冷系统[J]. 应用力学学报, 2021, 38(2): 630-637. DOI: 10.11776/cjam.38.02.A071. |
SHEN J, CHEN X J, CUI Z X. Design and optimization of internal water cooling system of permanent magnet synchronous motor based on CFD[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 630-637. DOI: 10.11776/cjam. 38.02.A071. | |
178 | NONNEMAN J, VAN DER SIJPE B, T'JOLLYN I, et al. Evaluation of high performance rotor cooling techniques for permanent magnet electric motors[C]//2021 IEEE International Electric Machines & Drives Conference (IEMDC). May 17-20, 2021, Hartford, CT, USA. IEEE, 2021: 1-7. DOI: 10.1109/IEMDC47953.2021.9449603. |
[1] | Yuguang LI, Xiang LIU, Yanzhao LIANG, Shuangzhen LIU. Research on the application of flywheel energy storage device in rail transit [J]. Energy Storage Science and Technology, 2024, 13(8): 2679-2686. |
[2] | Qianqian ZHOU, Yong HUANG, Ke CUI, Danan SUN. Research and test verification on simulation technology of motor temperature field of flywheel energy storage device [J]. Energy Storage Science and Technology, 2024, 13(8): 2589-2596. |
[3] | Du JIN, Guangchen LIU, Bowen SUN, Tianyuan HUANG, Jianwei ZHANG, Guizhen TIAN, Lili JING. Primary frequency modulation control strategy for flywheel energy storage counting and wind farms [J]. Energy Storage Science and Technology, 2024, 13(6): 1911-1920. |
[4] | Haifeng MA, Wenbo LI, Zonghui CAI, Lin LIU, Tong YU. Research on computer processing technology of flywheel energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1983-1985. |
[5] | Hong LI, Jiangyi LV, Jiantong SONG, Dong YAN. Analysis of energy characteristics of electromechanical composite energy storage system for vehicles [J]. Energy Storage Science and Technology, 2024, 13(3): 906-913. |
[6] | Zhiguo ZHANG, Gang WANG, Jing YANG, Shuping WANG, Dong LIU, Wufeng RAO. Research on the application of MW-level flywheel array for primary frequency regulation in wind farms [J]. Energy Storage Science and Technology, 2024, 13(10): 3569-3578. |
[7] | Xinglong ZUO, Yibing LIU, Run QIN, Wenhao QU, Wei TENG. Dynamic characteristics of flywheel energy storage virtual synchronous machine and analysis of power system frequency improvement [J]. Energy Storage Science and Technology, 2023, 12(6): 1920-1927. |
[8] | Bin LI, Jilei YE, Yu ZHANG, Shanshan SHI, Haojing WANG, Lili LIU, Mingzhe LI. Microgrid-coordinated control strategy with distributed new energy and electro-mechanical hybrid energy storage [J]. Energy Storage Science and Technology, 2023, 12(5): 1510-1515. |
[9] | Haishan LIU, Xianlong XU, Shuzhou WEI, Yalei PANG, Feng HONG. Flywheel energy storage participates in frequency modulation power division control based on improving power grid assessment index of north China power grid [J]. Energy Storage Science and Technology, 2023, 12(4): 1176-1184. |
[10] | Xin WU, Wenju SHANG, Zhiyong MA, Wei TENG, Shuang ZHANG, Hairong LUO. Coordinated control method for pumped and flywheel hybrid energy storage system [J]. Energy Storage Science and Technology, 2023, 12(2): 468-476. |
[11] | Yuanyuan JIAO, Yifei WANG, Xingjian DAI, Hualiang ZHANG, Haisheng CHEN. Overview of the motor-generator rotor cooling system in a flywheel energy storage system [J]. Energy Storage Science and Technology, 2023, 12(10): 3131-3144. |
[12] | Juntao CHEN, Yajun WANG, Shunyi SONG, Wenhao QU, Yibing LIU. Simulation of the primary frequency modulation process of wind power with an auxiliary flywheel energy storage [J]. Energy Storage Science and Technology, 2023, 12(1): 172-179. |
[13] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[14] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[15] | Junze GAO, Yibing LIU, Chuandi ZHOU, Haiting HE, Xin WU. Magnetic circuit design and magnetic analytical model of permanent magnet suspension bearing for flywheel [J]. Energy Storage Science and Technology, 2022, 11(5): 1437-1445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||