Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (10): 3523-3533.doi: 10.19799/j.cnki.2095-4239.2024.0300
• Energy Storage System and Engineering • Previous Articles Next Articles
Zhicong CHEN1(), Yue MA1, Huazheng YANG2, Chenpeng WANG1, Yinglong LIU1, Hao YE1, Jiawei LIU1, Xiaoru XU1, Yingli LIU1, Jiecheng CHEN3, Zhiwei DU4, Bo LIANG1,2()
Received:
2024-04-06
Revised:
2024-05-27
Online:
2024-10-28
Published:
2024-10-30
Contact:
Bo LIANG
E-mail:zhicongc@foxmail.com;liangbo@gdut.edu.cn
CLC Number:
Zhicong CHEN, Yue MA, Huazheng YANG, Chenpeng WANG, Yinglong LIU, Hao YE, Jiawei LIU, Xiaoru XU, Yingli LIU, Jiecheng CHEN, Zhiwei DU, Bo LIANG. Numerical simulation and experimental verification of micro-tubular solid oxide fuel cell with double-convex platform current collector in portable device[J]. Energy Storage Science and Technology, 2024, 13(10): 3523-3533.
Table 1
Input parameters of the numerical model"
名称 | 数值及单位 |
---|---|
工作温度 | 973.15 K |
阳极厚度 | 0.7 mm |
电解质厚度 | 10 μm |
阴极厚度 | 20 μm |
电池长度 | 100 mm |
参考压力 | 1 atm |
阴极气体成分 | 21%O2, 79%N2 (摩尔分数) |
阳极气体成分 | 97% H2, 3% H2O / 69.23% H2, 21.01% CO2, 2.88% CO |
电解质电导率 | 3.34×104×exp(-10300/T) [S/m] |
电解质恒压热容 | 600 [J/(kg·K)] |
电解质导热系数 | 2.1 [W/(m·K)] |
阴极电导率 | 2.57×107×exp(-80000/(8.314×T)) [S/m] |
阴极恒压热容 | 470 [J/(kg·K)] |
阴极导热系数 | 9.6 [W/(m·K)] |
阳极电导率 | 3.27×106-1065.3×T [S/m] |
阳极恒压热容 | 500 [J/(kg·K)] |
阳极导热系数 | 6.23 [W/(m·K)] |
集流体电导率 | 6.3×107 (S/m) |
阳极气体速率 | 200 sccm |
阴极气体速率 | 250 sccm |
孔隙率 | 0.36 |
1 | DING D, LI X X, LAI S Y, et al. Enhancing SOFC cathode performance by surface modification through infiltration[J]. Energy & Environmental Science, 2014, 7(2): 552-575. DOI: 10.1039/C3EE42926A. |
2 | CHEEKATAMARLA P K, FINNERTY C M, DU Y H, et al. Advanced tubular solid oxide fuel cells with high efficiency for internal reforming of hydrocarbon fuels[J]. Journal of Power Sources, 2009, 188(2): 521-526. DOI: 10.1016/j.jpowsour. 2008.11.128. |
3 | RADUWAN N F, MUCHTAR A, et al. Challenges in fabricating solid oxide fuel cell stacks for portable applications: A short review[J]. International Journal of Integrated Engineering, 2018, 10(5): DOI: 10.30880/ijie.2018.10.05.013. |
4 | BUJALSKI W, DIKWAL C M, KENDALL K. Cycling of three solid oxide fuel cell types[J]. Journal of Power Sources, 2007, 171(1): 96-100. DOI: 10.1016/j.jpowsour.2007.01.029. |
5 | LAWLOR V. Review of the micro-tubular solid oxide fuel cell (Part II: Cell design issues and research activities)[J]. Journal of Power Sources, 2013, 240: 421-441. DOI: 10.1016/j.jpowsour. 2013.03.191. |
6 | 邓笔财, 宋忠尚, 杜忠选, 等. 小型甲醇水蒸气重整制氢系统性能测试平台及其实验研究[J]. 石油化工, 2021, 50(9): 922-926. DOI: 10.3969/j.issn.1000-8144.2021.09.010. |
DENG B C, SONG Z S, DU Z X, et al. Research on platform of miniaturized methanol reforming system and its experiments[J]. Petrochemical Technology, 2021, 50(9): 922-926. DOI: 10.3969/j.issn.1000-8144.2021.09.010. | |
7 | 宋巧玲. 复合氧化物型催化剂催化甲醇水蒸气重整制氢的性能研究[D]. 上海: 上海工程技术大学, 2020. DOI: 10.27715/d.cnki.gshgj.2020.000709. |
SONG Q L. Study on the performance of composite oxide catalyst for hydrogen production from methanol steam reforming[D]. Shanghai: Shanghai University of Engineering Science, 2020. DOI: 10.27715/d.cnki.gshgj.2020.000709. | |
8 | TAKEZAWA N, IWASA N. Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals[J]. Catalysis Today, 1997, 36(1): 45-56. DOI: 10.1016/S0920-5861(96)00195-2. |
9 | HUANG Y H, WANG S F, TSAI A P, et al. Reduction behaviors and catalytic properties for methanol steam reforming of Cu-based spinel compounds CuX2O4 (X=Fe, Mn, Al, La)[J]. Ceramics International, 2014, 40(3): 4541-4551. DOI: 10.1016/j.ceramint. 2013.08.130. |
10 | SHEN J P, SONG C S. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catalysis Today, 2002, 77(1/2): 89-98. DOI: 10.1016/S0920-5861(02)00235-3. |
11 | MOTEVALIAN SEYEDI A, HAGHIGHI M, RAHEMI N. Significant influence of cutting-edge plasma technology on catalytic properties and performance of CuO-ZnO-Al2O3-ZrO2 nanocatalyst used in methanol steam reforming for fuel cell grade hydrogen production[J]. Ceramics International, 2017, 43(8): 6201-6213. DOI: 10.1016/j.ceramint.2017.02.018. |
12 | CHENG Z Z, ZHOU W Q, LAN G J, et al. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy[J]. Journal of Energy Chemistry, 2021, 63: 550-557. DOI: 10.1016/j.jechem.2021.08.025. |
13 | GUO C X, LI M, GUO W M, et al. Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming[J]. Chemical Engineering Journal, 2024, 486: 150331. DOI: 10.1016/j.cej.2024.150331. |
14 | XENOS D P, HOFMANN P, PANOPOULOS K D, et al. Detailed transient thermal simulation of a planar SOFC (solid oxide fuel cell) using gPROMS™[J]. Energy, 2015, 81: 84-102. DOI: 10.1016/j.energy.2014.11.049. |
15 | AMIRI A, VIJAY P, TADÉ M O, et al. Planar SOFC system modelling and simulation including a 3D stack module[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2919-2930. DOI: 10.1016/j.ijhydene.2015.12.076. |
16 | PIANKO-OPRYCH P, ZINKO T, JAWORSKI Z. Simulation of thermal stresses for new designs of microtubular solid oxide fuel cell stack[J]. International Journal of Hydrogen Energy, 2015, 40(42): 14584-14595. DOI: 10.1016/j.ijhydene.2015.05.164. |
17 | XU H R, CHEN B, TAN P, et al. Modeling of all porous solid oxide fuel cells[J]. Applied Energy, 2018, 219: 105-113. DOI: 10.1016/j.apenergy.2018.03.037. |
18 | HUSSAIN M M, LI X, DINCER I. A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189(2): 916-928. DOI: 10.1016/j.jpowsour. 2008.12.121. |
19 | NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535. DOI: 10.1016/j.enconman.2006.11.016. |
20 | LI K P, ARAKI T, KAWAMURA T, et al. Numerical analysis of current efficiency distributions in a protonic ceramic fuel cell using Nernst-Planck-Poisson model[J]. International Journal of Hydrogen Energy, 2020, 45(58): 34139-34149. DOI: 10.1016/j.ijhydene.2020.09.143. |
21 | YAO Y, MA Y, WANG C P, et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell[J]. Applied Energy, 2022, 327: 120010. DOI: 10.1016/j.apenergy.2022.120010. |
22 | YE H, MA Y, WANG C P, et al. A 3D printed redox-stable interconnector for bamboo-like tubular solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2023, 48(89): 34979-34986. DOI: 10.1016/j.ijhydene.2023.05.324. |
23 | 马跃, 林蔚然, 姚越, 等. 便携式甲醇蒸汽重整制氢耦合固体氧化物燃料电池实验装置设计[J]. 实验技术与管理, 2022, 39(4): 173-177. DOI: 10.16791/j.cnki.sjg.2022.04.033. |
MA Y, LIN W R, YAO Y, et al. Design of experimental instrument of combined microtubular solid oxide fuel cell with syngas reformed from methanol/steam mixture[J]. Experimental Technology and Management, 2022, 39(4): 173-177. DOI: 10.16791/j.cnki.sjg.2022.04.033. | |
24 | FERGUSON J R, FIARD J M, HERBIN R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. Journal of Power Sources, 1996, 58(2): 109-122. DOI: 10.1016/0378-7753(95)02269-4. |
25 | HUSSAIN M M, LI X, DINCER I. A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189(2): 916-928. DOI: 10.1016/j.jpowsour. 2008.12.121. |
26 | XU Q D, XIA L C, HE Q J, et al. Thermo-electrochemical modelling of high temperature methanol-fuelled solid oxide fuel cells[J]. Applied Energy, 2021, 291: 116832. DOI: 10.1016/j.apenergy.2021.116832. |
27 | FAN J H, SHI J X, ZHANG R Y, et al. Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell[J]. Journal of Power Sources, 2023, 556: 232449. DOI: 10.1016/j.jpowsour. 2022.232449. |
28 | 刘鑫宇, 张安安, 廖长江. 不同支撑结构的固体氧化物燃料电池数值模拟分析[J]. 储能科学与技术, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855. |
LIU X Y, ZHANG A A, LIAO C J. Numerical simulation analysis of solid oxide fuel cells with different support structures[J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. DOI: 10.19799/j.cnki.2095-4239.2023.0855. | |
29 | ILIEV I K, GIZZATULLIN A R, FILIMONOVA A A, et al. Numerical simulation of processes in an electrochemical cell using COMSOL multiphysics[J]. Energies, 2023, 16(21): 7265. DOI: 10.3390/en16217265. |
30 | FUNAHASHI Y, SHIMAMORI T, SUZUKI T, et al. Fabrication and characterization of components for cube shaped micro tubular SOFC bundle[J]. Journal of Power Sources, 2007, 163(2): 731-736. DOI: 10.1016/j.jpowsour.2006.10.002. |
31 | CHEN Y, LU M Y, YANG H Z, et al. 80 Hours operation of a tubular solid oxide fuel cell using propane/air[J]. Applied Energy, 2020, 272: 115099. DOI: 10.1016/j.apenergy.2020.115099. |
32 | HODJATI-PUGH O, ANDREWS J, DHIR A, et al. Analysis of current collection in micro-tubular solid oxide fuel cells: An empirical and mathematical modelling approach for minimised ohmic polarisation[J]. Journal of Power Sources, 2021, 494: 229780. DOI: 10.1016/j.jpowsour.2021.229780. |
33 | 邵诚, 李浩, 朱文超, 等. 基于经济模型预测控制的燃料电池空气管理[J]. 电池, 2023, 53(5): 494-498. DOI: 10.19535/j.1001-1579.2023.05.006. |
SHAO C, LI H, ZHU W C, et al. Economic model predictive control based on air management in fuel cells[J]. Dianchi(Battery Bimonthly), 2023, 53(5): 494-498. DOI: 10.19535/j.1001-1579. 2023.05.006. |
[1] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[2] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[3] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[4] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[5] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
[6] | Heqing TIAN, Yiming GAO, Junjie ZHOU. Numerical simulation on the melting process of binary chloride salt nanofluids in a square cavity [J]. Energy Storage Science and Technology, 2024, 13(3): 1030-1035. |
[7] | Jian LIU, Libo YU, Zhenxing WU, Jiegang MOU. Effect of thermal characteristics of lithium-ion battery charging and discharging equipment on air cooling [J]. Energy Storage Science and Technology, 2024, 13(3): 914-923. |
[8] | Qi LIAO, Xiaolin CAO, Yibo DENG, Yaolin YANG, Ting CHEN. Heat dissipation simulation of tram supercapacitor module [J]. Energy Storage Science and Technology, 2024, 13(2): 702-711. |
[9] | Hailan WANG, Xiaoyu ZHANG, Jianhong GUO, Yong ZHAO, Zhuo CHEN, Yibo WANG. Numerical analysis of heat transfer performance in a shell-and-tube heat storage unit based using medium-low temperature phase change material [J]. Energy Storage Science and Technology, 2024, 13(10): 3376-3387. |
[10] | Yuchao QIU, Baishuang CHEN, Cheng CHEN, Ruipeng QIAN. Quasi-static constitutive modeling of lithium-ion battery materials under compression [J]. Energy Storage Science and Technology, 2024, 13(10): 3518-3522. |
[11] | Kaifu LUAN, Changkun CAI, Manyi XIE, Chun ZHANG, Kuncan ZHENG, Shengli AN. Research progress of macroscale numerical simulation of fluid and thermal fields of solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(9): 2985-3002. |
[12] | Jinghao YAN, Jie LI, Yiming LI, Xiaoqin SUN, Lina XI, Changwei JIANG. Numerical simulation study on heat storage performance of composite phase-change units based on gradient-porosity metal foam [J]. Energy Storage Science and Technology, 2023, 12(8): 2424-2434. |
[13] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[14] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[15] | Zian PENG, Wenchao DUAN, Jie LI, Xiaoqin SUN, Mengjie SONG. Energy storage characteristics of a shell-and-tube phase change energy storage heat exchanger for data centers [J]. Energy Storage Science and Technology, 2023, 12(6): 1765-1773. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||