Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (4): 1302-1309.doi: 10.19799/j.cnki.2095-4239.2023.0859
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chunzheng LIU(), Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG()
Received:
2023-11-28
Revised:
2024-01-23
Online:
2024-04-26
Published:
2024-04-22
Contact:
Zhejuan ZHANG
E-mail:15713788759@163.com;zjzhang@phy.ecnu.edu.cn
CLC Number:
Chunzheng LIU, Peipei LAI, Zhuo SUN, Er NIE, Zhejuan ZHANG. Dented surface on silica-carbon particles to improve the electrochemical performance of lithium-ion battery anode[J]. Energy Storage Science and Technology, 2024, 13(4): 1302-1309.
1 | YOKO A, OSHIMA Y. Recovery of silicon from silicon sludge using supercritical water[J]. The Journal of Supercritical Fluids, 2013, 75: 1-5. |
2 | WANG M Y, XI F S, LI S Y, et al. ZIF-67-derived porous nitrogen-doped carbon shell encapsulates photovoltaic silicon cutting waste as anode in high-performance lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2023, 931: 117210. |
3 | ZHAO Z Y, CHEN F Q, HAN J W, et al. Revival of microparticular silicon for superior lithium storage[J]. Advanced Energy Materials, 2023, 13(24): 2300367. |
4 | 郑瀚, 来沛霈, 田晓华, 等. 多级碳复合的大尺寸硅颗粒在锂离子电池负极中的性能[J]. 储能科学与技术, 2023, 12(1): 23-34. |
ZHENG H, LAI P P, TIAN X H, et al. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. | |
5 | 田晓华, 余晨露, 郑瀚, 等. 硅碳复合结构对锂离子电池负极电化学性能的影响[J]. 华东师范大学学报(自然科学版), 2022(1): 52-61. |
TIAN X H, YU C L, ZHENG H, et al. Effect of silicon/carbon composite structure on its electrochemical performance as a lithium-ion battery anode[J]. Journal of East China Normal University (Natural Science), 2022(1): 52-61. | |
6 | SHI Q T, ZHOU J H, ULLAH S, et al. A review of recent developments in Si/C composite materials for Li-ion batteries[J]. Energy Storage Materials, 2021, 34: 735-754. |
7 | CASIMIR A, ZHANG H G, OGOKE O, et al. Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation[J]. Nano Energy, 2016, 27: 359-376. |
8 | WU H, CUI Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429. |
9 | CHEN K X, XIONG J Y, YU H, et al. Si@nitrogen-doped porous carbon derived from covalent organic framework for enhanced Li-storage[J]. Journal of Colloid and Interface Science, 2023, 634: 176-184. |
10 | WOO S H, PARK J H, HWANG S W, et al. Silicon embedded nanoporous carbon composite for the anode of Li ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(8): A1273-A1277. |
11 | JUNG C H, CHOI J, KIM W S, et al. A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(17): 8013-8020. |
12 | WU Z Y, LUO J, PENG J, et al. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery[J]. Green Energy and Environment, 2021, 6: 517-527. |
13 | CHEN M Y, ZHANG Y C, DUAN P X, et al. Si/TiSi2/G@void@C composite with good electrochemical performance as anode of lithium ion batteries[J]. Applied Physics Letters, 2022, 121(2): 023901. |
14 | JI H S, LIU Z J, LI X, et al. Recycling silicon waste from the photovoltaic industry to prepare yolk-shell Si@void@C anode materials for lithium-ion batteries[J]. Processes, 2023, 11(6): 1764. |
15 | LIU R P, SHEN C, DONG Y, et al. Sandwich-like CNTs/Si/C nanotubes as high performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(30): 14797-14804. |
16 | ZHU J, WANG T, FAN F R, et al. Atomic-scale control of silicon expansion space as ultrastable battery anodes[J]. ACS Nano, 2016, 10(9): 8243-8251. |
17 | WU J X, QIN X Y, MIAO C, et al. A honeycomb-cobweb inspired hierarchical core–shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes[J]. Carbon, 2016, 98: 582-591. |
18 | XU Q, LI J Y, SUN J K, et al. Watermelon-inspired Si/C microspheres with hierarchical buffer structures for densely compacted lithium-ion battery anodes[J]. Advanced Energy Materials, 2017, 7(3): 1601481. |
19 | SU H P, LI X R, LIU C W, et al. Scalable synthesis of micrometer-sized porous silicon/carbon composites for high-stability lithium-ion battery anodes[J]. Chemical Engineering Journal, 2023, 451: 138394. |
20 | YANG S H, KIM J K, JUNG D S, et al. Facile fabrication of Si-embedded amorphous carbon@graphitic carbon composite microspheres via spray drying as high-performance lithium-ion battery anodes[J]. Applied Surface Science, 2022, 606: 154799. |
21 | CHO M K, YOU S J, WOO J G, et al. Anomalous Si-based composite anode design by densification and coating strategies for practical applications in Li-ion batteries[J]. Composites Part B: Engineering, 2021, 215: 108799. |
22 | CHOI Y J, LEE G W, KIM Y H, et al. Microspherical assembly of selectively pyridinic N-doped nanoperforated graphene for stable Li-metal anodes: Synergistic coupling of lithiophilic pyridinic N on perforation edges and low tortuosity via graphene nanoperforation[J]. Chemical Engineering Journal, 2023, 455: 140770. |
23 | TIAN L L, WEI X Y, ZHUANG Q C, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage[J]. Nanoscale, 2014, 6(11): 6075-6083. |
24 | JU Z C, LI P Z, MA G Y, et al. Few layer nitrogen-doped graphene with highly reversible potassium storage[J]. Energy Storage Materials, 2018, 11: 38-46. |
[1] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[2] | Jiangwei SHEN, Canbiao ZHOU, Xing SHU, Zheng CHEN, Yonggang LIU. State of charge estimation for lithium batteries based on an improved electrochemical model at a wide temperature environment [J]. Energy Storage Science and Technology, 2023, 12(9): 2904-2916. |
[3] | Man CHEN, Zhixiang CHENG, Chunpeng ZHAO, Peng PENG, Qikai LEI, Kaiqiang JIN, Qingsong WANG. Numerical simulation study on explosion hazards of lithium-ion battery energy storage containers [J]. Energy Storage Science and Technology, 2023, 12(8): 2594-2605. |
[4] | Yuxin CHEN, Jiamu YANG, Cheng LIAN, Honglai LIU. Analysis of stable coating window of lithium battery electrode paste based on phase field models [J]. Energy Storage Science and Technology, 2023, 12(7): 2185-2193. |
[5] | Yikun WU, Jie HE, Le YANG, Weili SONG, Haosen CHEN. Multiscale and multiphysics theoretical model and computational method for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(7): 2141-2154. |
[6] | Zenghui HAO, Xunliang LIU, Yuan MENG, Nan MENG, Zhi WEN. Effect of electrode interface microstructure on the performance of solid-state lithium-ion battery [J]. Energy Storage Science and Technology, 2023, 12(7): 2095-2104. |
[7] | Jialiang LIU, Cuijing GUO, Huanling WANG. Safety detection and verification of energy storage in lithium-ion battery based on fire fault tree model [J]. Energy Storage Science and Technology, 2023, 12(5): 1695-1704. |
[8] | Xinyu LI, Xuebing HAN, Languang LU, Jianqiu LI, Minggao OUYANG. Optimization of an impedance model for power Li-ion batteries based on a large multiplier current pulse [J]. Energy Storage Science and Technology, 2023, 12(5): 1686-1694. |
[9] | Liyu ZHAO, Huanwu SUN, Shichuang LIU, Zhiyuan YAN. Energy consumption comparison and optimization of auxiliary power-battery heating system of heavy truck [J]. Energy Storage Science and Technology, 2023, 12(4): 1139-1147. |
[10] | Minyuan GUAN, Jianliang SHEN, Guohua XU, Shun TANG, Weixin ZHANG, Yuancheng CAO. Design and performance research of targeted-fire fighting equipment for lithium-ion battery energy storage system [J]. Energy Storage Science and Technology, 2023, 12(4): 1131-1138. |
[11] | Peng LIN, Tao LIU, Peng JIN, Zhenpo WANG, Shengjie WANG, Hongsheng YUAN, Ze MA, Yu DI. Identification of lithium-ion battery equivalent circuit model parameters based on the multi-innovation identification algorithm [J]. Energy Storage Science and Technology, 2023, 12(10): 3155-3169. |
[12] | Han ZHENG, Peipei LAI, Xiaohua TIAN, Zhuo SUN, Zhejuan ZHANG. Performance of large-scale silicon particles coated with multistage carbon as anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 23-34. |
[13] | Rongyang WEI, Tian MAO, Han GAO, Jianren PENG, Jian YANG. Health state estimation of lithium ion battery based on TWP-SVR [J]. Energy Storage Science and Technology, 2022, 11(8): 2585-2599. |
[14] | Hang YU, Ying ZHANG, Chaohang XU, Sihan YU. Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems [J]. Energy Storage Science and Technology, 2022, 11(8): 2653-2663. |
[15] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||