Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (3): 1040-1053.doi: 10.19799/j.cnki.2095-4239.2025.0137
• Emerging Investigator Issue of Energy Storage • Previous Articles Next Articles
Xinyu ZHANG1(), Shenghao LUO1, Yingxin WU1, Zhenying LIU1, Lizhi ZHANG1, Ziye LING1,2(
)
Received:
2025-02-20
Revised:
2025-03-06
Online:
2025-03-28
Published:
2025-04-28
Contact:
Ziye LING
E-mail:2290652654@qq.com;zyling@scut.edu.cn
CLC Number:
Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053.
Table 1
Comparison of composite PCMs for battery thermal management and thermal runaway protection"
复合PCMs组成 | 应用场景 | 焓值/(J/g) | 热导率/[W/(m·K)] | 阻燃性 | 性能 | 电池种类 | 参考文献 |
---|---|---|---|---|---|---|---|
三水乙酸钠+尿素+膨胀石墨+有机硅 | 散热 | 181.0 | 4.96 | 热释放率和有效燃烧热几乎为0 | 2C放电倍率下最高温度52.3 ℃,最大温差4 ℃ | Sanyo 18650电池组 | [ |
石蜡+SEBS+h-BN | 散热 | 127.8 | 2.7 | — | 6C放电倍率下最高温度45 ℃,最大温差4 ℃ | 8.6 Ah棱柱电池组 | [ |
石蜡+SEBS+膨胀石墨 | 散热和加热 | 159.9 | 1.49 | — | 30 ℃下经过10次充放电循环后温度降低3.9 ℃;-20 ℃下加热速率12.9 ℃/min | 棱柱电池和18650电池组 | [ |
石蜡+NR+膨胀石墨 | 散热 | 156.5 | 3.4 | — | 3C放电倍率下最高温度45 ℃,最大温差2 ℃ | 2.6 Ah 18650电池组 | [ |
20% OP28E纳米相变乳液 | 散热 | 44.1 | 0.53~0.60 | — | 2C放电倍率下最高温度44.6 ℃,最大温差2.5 ℃ | 2.6 Ah 18650电池组 | [ |
10%石蜡纳米相变乳液 | 散热 | 23.9 | 0.55~0.62 | — | 9C放电倍率下最高温度46 ℃,最大温差3.5 ℃ | 8 Ah棱柱电池组 | [ |
RT44HC+膨胀石墨 | 保温 | 134.3 | 9.57 | — | 47 ℃降至 -10 ℃时间延长约1750 s;2C放电倍率下最大温差8.5 ℃ | 2.6 Ah 18650电池组 | [ |
六水氯化钙+CMC | 加热 | 127.8 | — | — | 5 ℃下加热速率7.5 ℃/min,放电容量提升9.87% | 3.2 Ah 18650电池 | [ |
石蜡+膨胀石墨 | 散热和加热 | 166.2 | 2.77 | — | 3C放电倍率下温度低于50 ℃;-40 ℃下加热速率13.4 ℃/min,最大温差3.3 ℃ | 18650电池组 | [ |
石蜡+二氧化硅气凝胶 | 热失控防护 | 79.24 | 0.051 | UL-94测试中达到V-0级 | 完全阻止热失控传播 | 40 Ah棱柱电池组 | [ |
石蜡+膨胀型阻燃剂+碳化硅+膨胀石墨 | 散热和热失控防护 | 112.9 | 4.022 | — | 2C放电倍率下最高温度降低7.4 ℃;热失控传播延长90 s | Sanyo 18650和10 Ah NCM软包电池组 | [ |
三水乙酸钠+膨胀石墨 | 热失控防护 | 793.4 | 4.96 | — | 完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
三水乙酸钠+尿素+膨胀石墨 | 热失控防护 | 1000 | 9.05 | — | 完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
TCM40+膨胀石墨 | 散热和热失控防护 | 1276 | 9.1 | 垂直燃烧测试中达到V-0级 | 3C放电倍率下最高温度36 ℃,最大温差2.5 ℃;完全阻止热失控传播 | 2.6 Ah 18650电池组 | [ |
1 | CHAVAN S, VENKATESWARLU B, SALMAN M, et al. Thermal management strategies for lithium-ion batteries in electric vehicles: Fundamentals, recent advances, thermal models, and cooling techniques[J]. International Journal of Heat and Mass Transfer, 2024, 232: 125918. DOI: 10.1016/j.ijheatmasstransfer. 2024.125918. |
2 | VIKRAM S, VASHISHT S, RAKSHIT D, et al. Recent advancements and performance implications of hybrid battery thermal management systems for electric vehicles[J]. Journal of Energy Storage, 2024, 90: 111814. DOI: 10.1016/j.est. 2024. 111814. |
3 | DING Y H, ZHENG Y D, LI S Y, et al. A review of battery thermal management methods for electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2023, 20(2): 021002. DOI: 10.1115/1.4054859. |
4 | LI J H, HUANG J H, CAO M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries[J]. Applied Thermal Engineering, 2018, 131: 660-668. DOI: 10.1016/j.applthermaleng. 2017.12.023. |
5 | ZHOU S L, LIN S, ZHANG W B, et al. Kinetics study on inhibiting battery thermal runaway using an inorganic phase change material with a super high thermochemical storage capacity[J]. Process Safety and Environmental Protection, 2024, 191: 643-657. DOI: 10.1016/j.psep.2024.08.134. |
6 | 刘松燕, 王卫良, 彭世亮, 等. 兼顾高/低温环境性能的动力电池热管理系统设计[J]. 储能科学与技术, 2024, 13(7): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. |
LIU S Y, WANG W L, PENG S L, et al. Thermal management system for power battery in high/low-temperature environments[J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. DOI: 10.19799/j.cnki.2095-4239.2024.0369. | |
7 | LI Z, TAVAKOLI F, EL-SHAFAY A S, et al. Economic cost and technical efficiency analysis of thermal management of a triple pack of lithium-ion battery with forced airflow and nano-phase change materials[J]. Journal of Power Sources, 2022, 542: 231715. DOI: 10.1016/j.jpowsour.2022.231715. |
8 | AMALESH T, LAKSHMI NARASIMHAN N. Liquid cooling vs hybrid cooling for fast charging lithium-ion batteries: A comparative numerical study[J]. Applied Thermal Engineering, 2022, 208: 118226. DOI: 10.1016/j.applthermaleng.2022.118226. |
9 | LUO M Y, SONG J Q, LING Z Y, et al. Phase change material coat for battery thermal management with integrated rapid heating and cooling functions from -40 ℃ to 50 ℃[J]. Materials Today Energy, 2021, 20: 100652. DOI: 10.1016/j.mtener. 2021.100652. |
10 | 罗明昀, 凌子夜, 方晓明, 等. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. DOI: 10.16085/j.issn.1000-6613.2021-2278. |
LUO M Y, LING Z Y, FANG X M, et al. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607. DOI: 10.16085/j.issn.1000-6613.2021-2278. | |
11 | ZHAO J J, CHEN Y, GONG Y, et al. A novel paraffin wax/expanded graphite/bacterial cellulose powder phase change materials for the dependable battery safety management[J]. Batteries, 2024, 10(10): 363. DOI: 10.3390/batteries10100363. |
12 | LUO H T, WANG W J, WU G H, et al. Magnetically triggered heat release from hydrate salt composite microchannels for low-temperature battery thermal management[J]. Journal of Cleaner Production, 2024, 446: 141462. DOI: 10.1016/j.jclepro.2024.141462. |
13 | MOHAMED SHAMNAZ P T, BAL D K, SAHOO B B. A technical review on controlling the Li-ion battery temperature through composite phase change materials and hybrid cooling techniques[J]. Journal of Energy Storage, 2025, 112: 115584. DOI: 10.1016/j.est.2025.115584. |
14 | KUMAR S S, RAO G P. Recent progress on battery thermal management with composite phase change materials[J]. Energy Storage, 2024, 6(4): e647. DOI: 10.1002/est2.647. |
15 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review[J]. Energy Storage Materials, 2020, 25: 251-295. DOI: 10.1016/j.ensm.2019.10.010. |
16 | CAO J H, LING Z Y, LIN X M, et al. Flexible composite phase change material with enhanced thermophysical, dielectric, and mechanical properties for battery thermal management[J]. Journal of Energy Storage, 2022, 52: 104796. DOI: 10.1016/j.est.2022.104796. |
17 | CHEN Z G, ZHANG F, SHAO L Q, et al. Numerical investigation and optimization of battery thermal management systems based on phase change material coupled with heating plates in low temperature environment[J]. Journal of Energy Storage, 2024, 101: 113875. DOI: 10.1016/j.est.2024.113875. |
18 | JIA Y K, UDDIN M, LI Y X, et al. Thermal runaway propagation behavior within 18650 lithium-ion battery packs: A modeling study[J]. Journal of Energy Storage, 2020, 31: 101668. DOI: 10.1016/j.est.2020.101668. |
19 | LYON R E, WALTERS R N. Energetics of lithium ion battery failure[J]. Journal of Hazardous Materials, 2016, 318: 164-172. DOI: 10.1016/j.jhazmat.2016.06.047. |
20 | CHEN M Y, ZHU M H, ZHANG S Y, et al. Experimental investigation on mitigation of thermal runaway propagation of lithium-ion battery module with flame retardant phase change materials[J]. Applied Thermal Engineering, 2023, 235: 121401. DOI: 10.1016/j.applthermaleng.2023.121401. |
21 | 王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217. DOI: 10.19799/j.cnki.2095-4239.2020.0206. |
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. DOI: 10.19799/j.cnki.2095-4239.2020.0206. | |
22 | CHEN M Y, ZHANG S Y, ZHAO L Y, et al. Preparation of thermally conductive composite phase change materials and its application in lithium-ion batteries thermal management[J]. Journal of Energy Storage, 2022, 52: 104857. DOI: 10.1016/j.est.2022.104857. |
23 | XIE M, HUANG J C, LING Z Y, et al. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110081. DOI: 10.1016/j.solmat.2019.110081. |
24 | LING Z Y, LI S M, CAI C Y, et al. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability[J]. Applied Thermal Engineering, 2021, 193: 117002. DOI: 10.1016/j.applthermaleng.2021.117002. |
25 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. DOI: 10.1016/j.apenergy.2014.01.075. |
26 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: An experimental and numerical study[J]. Energy, 2020, 191: 116565. DOI: 10.1016/j.energy.2019.116565. |
27 | LUO M Y, LIN X M, LING Z Y, et al. An electric conductive wide-temperature flexible phase change material for all-climate battery thermal management[J]. Applied Thermal Engineering, 2024, 256: 124051. DOI: 10.1016/j.applthermaleng.2024.124051. |
28 | YANG K X, LING Z Y, FANG X M, et al. Introducing a flexible insulation network to the expanded graphite-based composite phase change material to enhance dielectric and mechanical properties for battery thermal management[J]. Journal of Energy Storage, 2023, 66: 107486. DOI: 10.1016/j.est.2023.107486. |
29 | CAO J H, WU Y, LING Z Y, et al. Upgrade strategy of commercial liquid-cooled battery thermal management system using electric insulating flexible composite phase change materials[J]. Applied Thermal Engineering, 2021, 199: 117562. DOI: 10.1016/j.applthermaleng.2021.117562. |
30 | CHEN J, ZHANG P. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media[J]. Applied Energy, 2017, 190: 868-879. DOI: 10.1016/j.apenergy.2017.01.012. |
31 | ZHANG C X, JI J, ZHANG X L, et al. Development of highly stable low supercooling paraffin nano phase change emulsions for thermal management systems[J]. Journal of Molecular Liquids, 2024, 413: 125905. DOI: 10.1016/j.molliq.2024.125905. |
32 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. DOI: 10.1016/j.energy.2020.118215. |
33 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. DOI: 10.1016/j.apenergy.2020.115808. |
34 | CAO J H, FENG J X, FANG X M, et al. A delayed cooling system coupling composite phase change material and nano phase change material emulsion[J]. Applied Thermal Engineering, 2021, 191: 116888. DOI: 10.1016/j.applthermaleng.2021.116888. |
35 | WANG Y S, LUO J, WANG S, et al. Shape-stabilized phase change material with internal coolant channel coupled with phase change emulsion for power battery thermal management[J]. Chemical Engineering Journal, 2022, 438: 135648. DOI: 10.1016/j.cej.2022.135648. |
36 | LING Z Y, WEN X Y, ZHANG Z G, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures[J]. Energy, 2018, 144: 977-983. DOI: 10.1016/j.energy.2017.12.098. |
37 | LING Z Y, LUO M Y, SONG J Q, et al. A fast-heat battery system using the heat released from detonated supercooled phase change materials[J]. Energy, 2021, 219: 119496. DOI: 10.1016/j.energy.2020.119496. |
38 | LUO M Y, LIN X M, FENG J X, et al. Fast self-preheating system and energy conversion model for lithium-ion batteries under low-temperature conditions[J]. Journal of Power Sources, 2023, 565: 232897. DOI: 10.1016/j.jpowsour.2023.232897. |
39 | LUO M Y, LING Z Y, ZHANG Z G, et al. A fast-response preheating system coupled with supercapacitor and electric conductive phase change materials for lithium-ion battery energy storage system at low temperatures[J]. Journal of Energy Storage, 2023, 73: 109255. DOI: 10.1016/j.est.2023.109255. |
40 | OSMANI K, ALKHEDHER M, RAMADAN M, et al. Recent progress in the thermal management of lithium-ion batteries[J]. Journal of Cleaner Production, 2023, 389: 136024. DOI: 10.1016/j.jclepro.2023.136024. |
41 | LING Z Y, LIN W Z, ZHANG Z G, et al. Computationally efficient thermal network model and its application in optimization of battery thermal management system with phase change materials and long-term performance assessment[J]. Applied Energy, 2020, 259: 114120. DOI: 10.1016/j.apenergy.2019.114120. |
42 | MO C M, ZHANG G Q, MA X R, et al. Integrated battery thermal management system coupling phase change material cooling and direct heating strategies[J]. Energy & Fuels, 2022, 36(17): 10372-10383. DOI: 10.1021/acs.energyfuels.2c01984. |
43 | HUANG Q Q, LI X X, ZHANG G Q, et al. Innovative thermal management and thermal runaway suppression for battery module with flame retardant flexible composite phase change material[J]. Journal of Cleaner Production, 2022, 330: 129718. DOI: 10.1016/j.jclepro.2021.129718. |
44 | NIU J Y, DENG S Y, GAO X N, et al. Experimental study on low thermal conductive and flame retardant phase change composite material for mitigating battery thermal runaway propagation[J]. Journal of Energy Storage, 2022, 47: 103557. DOI: 10.1016/j.est.2021.103557. |
45 | CAO J H, LING Z Y, LIN S, et al. Thermochemical heat storage system for preventing battery thermal runaway propagation using sodium acetate trihydrate/expanded graphite[J]. Chemical Engineering Journal, 2022, 433: 133536. DOI: 10.1016/j.cej.2021.133536. |
46 | LIN S, LING Z Y, LI S M, et al. Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage[J]. Energy, 2023, 266: 126481. DOI: 10.1016/j.energy.2022.126481. |
47 | ZHOU S L, ZHANG W B, LIN S, et al. Enhancing lithium-ion battery pack safety: Mitigating thermal runaway with high-energy storage inorganic hydrated salt/expanded graphite composite[J]. Journal of Energy Storage, 2024, 92: 112089. DOI: 10.1016/j.est.2024.112089. |
48 | MOHAMED S A, AL-SULAIMAN F A, IBRAHIM N I, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 1072-1089. DOI: 10.1016/j.rser.2016.12.012. |
49 | ZHANG H, XU C L, FANG G Y. Encapsulation of inorganic phase change thermal storage materials and its effect on thermophysical properties: A review[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111747. DOI: 10.1016/j.solmat. 2022.111747. |
50 | MA Q Y, GAO W. Preparation and characterization of high-enthalpy inorganic hydrated salt phase change materials based on sodium silicate precursor[J]. Journal of Thermal Analysis and Calorimetry, 2024, 149(23): 14449-14461. DOI: 10.1007/s10973-024-13762-9. |
51 | ZHANG W B, ZHANG Y X, LING Z Y, et al. Microinfiltration of Mg(NO3)2·6H2O into g-C3N4 and macroencapsulation with commercial sealants: A two-step method to enhance the thermal stability of inorganic composite phase change materials[J]. Applied Energy, 2019, 253: 113540. DOI: 10.1016/j.apenergy. 2019.113540. |
52 | MAN X, LU H, XU Q, et al. Preparation and thermal property enhancement of sodium acetate trihydrate-lithium chloride-potassium chloride expanded graphite composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2024, 266: 112695. DOI: 10.1016/j.solmat.2024.112695. |
[1] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[2] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[3] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[4] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[5] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
[6] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
[7] | Pengjie ZHU, Wei LI, Chu ZHANG, Hao SONG, Beibei LI, Xiumei LIU, Lili LIU. Study on early warning system for thermal runaway of lithium batteries in energy storage cabinets due to smoke and gas diffusion [J]. Energy Storage Science and Technology, 2025, 14(2): 624-635. |
[8] | Zhiying YANG, Wei LU, Jia YAO, Yang CHENG, Dejian WU, Hailong WEN. Liquid-cooled plate cooling channels design based on variable density topology optimization [J]. Energy Storage Science and Technology, 2025, 14(2): 702-713. |
[9] | Jinhao YE, Junhui HOU, Zhengguo ZHANG, Ziye LING, Xiaoming FANG, Silin HUANG, Zhiwen XIAO. Thermal runaway characteristics and gas generation behavior of 100 Ah lithium iron phosphate pouch cell [J]. Energy Storage Science and Technology, 2025, 14(2): 636-647. |
[10] | Huaiyu HUANG, Silin HUANG, Rongchao ZHAO, Zhiwen XIAO, Junhui HOU, Liwei YAN. Experimental study on thermal runaway characteristics triggered by insulation failure of aluminum-plastic film shell of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2025, 14(2): 613-623. |
[11] | Hairui WANG, Changyu XU, Guifu ZHU, Xiaojian HOU. A parallel multi cale-featured fusion model for state-of-health estimation of lithium-ion batteries based on relaxation voltage [J]. Energy Storage Science and Technology, 2025, 14(2): 799-811. |
[12] | Zhiwei KUANG, Zhendong ZHANG, Lei SHENG, Linxiang FU. Research on low-temperature rapid heating method for high-capacity lithium-ion batteries in energy storage [J]. Energy Storage Science and Technology, 2025, 14(2): 791-798. |
[13] | Heyu LI, Xiaobo HONG, Zihan CHEN, Dianbo RUAN. The effect of porous heat insulation plate on the heat spread barrier of lithium-ion battery module [J]. Energy Storage Science and Technology, 2025, 14(2): 479-487. |
[14] | Jianru ZHANG, Qiyu WANG, Qinghao LI, Xianying ZHANG, Bitong WANG, Xiqian YU, Hong LI. Physical characterization techniques and applications in lithium battery failure analysis [J]. Energy Storage Science and Technology, 2025, 14(1): 286-309. |
[15] | Yuanxiu XING, Zhuanwei LIU, Yufeng XING, Wenbo WANG. BDD-DETR: An efficient algorithm for detecting small surface defects on lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 370-379. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||