Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (4): 1461-1470.doi: 10.19799/j.cnki.2095-4239.2024.0996
• Energy Storage System and Engineering • Previous Articles Next Articles
Boxu YU1(), Rui HAN2, Qian LIU1, Zhirong LIAO1, Xing JU1, Chao XU1(
)
Received:
2024-10-28
Revised:
2024-12-13
Online:
2025-04-28
Published:
2025-05-20
Contact:
Chao XU
E-mail:boxuny@163.com;mechxu@ncepu.edu.cn
CLC Number:
Boxu YU, Rui HAN, Qian LIU, Zhirong LIAO, Xing JU, Chao XU. Thermodynamic performance of a flexible retrofit Carnot battery energy storage system in a coupled thermal power plant[J]. Energy Storage Science and Technology, 2025, 14(4): 1461-1470.
1 | 马汀山, 王妍, 吕凯, 等. "双碳"目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148. DOI: 10.13334/j.0258-8013.pcsee.221899. |
MA T S, WANG Y, LYU K, et al. Research progress on flexible transformation technology of thermal power unit coupled energy storage under the goal of "double carbon"[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. DOI: 10.13334/j.0258-8013.pcsee.221899. | |
2 | 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述[J]. 中国电机工程学报, 2020, 40(1): 1-18, 369. DOI: 10.13334/j.0258-8013.pcsee.190212. |
LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids[J]. Proceedings of the CSEE, 2020, 40(1): 1-18, 369. DOI: 10.13334/j.0258-8013.pcsee.190212. | |
3 | 张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578. DOI: 10.19799/j.cnki.2095-4239.2021.0347. |
ZHANG X R, XU Y J, YANG L J, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5): 1565-1578. DOI: 10.19799/j.cnki.2095-4239.2021.0347. | |
4 | BAUER D. Carnot batteries[C]//10th German-Japanese Environment and Energy Dialogue Forum, 2019. |
5 | DUMONT O, FRATE G F, PILLAI A, et al. Carnot battery technology: A state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756. DOI: 10.1016/j.est.2020.101756. |
6 | 韩瑞, 廖志荣, 于博旭, 等. 面向火电厂改造的熔盐卡诺电池储能系统仿真研究[J]. 储能科学与技术, 2023, 12(12): 3605-3615. DOI: 10.19799/j.cnki.2095-4239.2023.0547. |
HAN R, LIAO Z R, YU B X, et al. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant[J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. DOI: 10.19799/j.cnki.2095-4239. 2023.0547. | |
7 | GEYER M, TRIEB F, GIULIANO S. Repurposing of existing coal-fired power plants into thermal storage plants for renewable power in Chile[J]. Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ): Bonn, Germany, 2020. |
8 | LIN X J, SUN P, ZHONG W, et al. Thermodynamic analysis and operation investigation of a cross-border integrated energy system based on steam Carnot battery[J]. Applied Thermal Engineering, 2023, 220: 119804. DOI: 10.1016/j.applthermaleng. 2022.119804. |
9 | BLANQUICETH J, CARDEMIL J M, HENRÍQUEZ M, et al. Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants[J]. Renewable and Sustainable Energy Reviews, 2023, 175: 113134. DOI: 10.1016/j.rser.2022.113134. |
10 | ZHANG Z, ZHOU M, YUAN B, et al. Multipath retrofit planning approach for coal-fired power plants in low-carbon power system transitions: Shanxi Province case in China[J]. Energy, 2023, 275: 127502. DOI: 10.1016/j.energy.2023.127502. |
11 | VINNEMEIER P, WIRSUM M, MALPIECE D, et al. Integration of heat pumps into thermal plants for creation of large-scale electricity storage capacities[J]. Applied Energy, 2016, 184: 506-522. DOI: 10.1016/j.apenergy.2016.10.045. |
12 | YONG Q Q, TIAN Y P, QIAN X, et al. Retrofitting coal-fired power plants for grid energy storage by coupling with thermal energy storage[J]. Applied Thermal Engineering, 2022, 215: 119048. DOI: 10.1016/j.applthermaleng.2022.119048. |
13 | 赫广迅, 宋业琛. 基于火电站转型储能电站的超高温热泵及熔盐储换热系统工程应用设计[J]. 汽轮机技术, 2023, 65(2): 93-96, 146. DOI: 10.3969/j.issn.1001-5884.2023.02.004. |
HE G X, SONG Y C. Engineering application design of ultra-high temperature heat pump and molten salt heat storage and exchange system based on the rmal power station transformation to energy storage power station[J]. Turbine Technology, 2023, 65(2): 93-96, 146. DOI: 10.3969/j.issn.1001-5884.2023.02.004. | |
14 | CHEN D X, HAN Z H, HAN X, et al. Design, operation, and case analyses of a novel thermodynamic system combining coal-fired cogeneration and decoupled Carnot battery using CO2 as working fluid[J]. Energy Conversion and Management, 2023, 296: 117680. DOI: 10.1016/j.enconman.2023.117680. |
15 | WANG B G, MA H, REN S J, et al. Effects of integration mode of the molten salt heat storage system and its hot storage temperature on the flexibility of a subcritical coal-fired power plant[J]. Journal of Energy Storage, 2023, 58: 106410. DOI: 10.1016/j.est.2022.106410. |
16 | XUE X J, ZHAO Y, ZHAO C Y. Multi-criteria thermodynamic analysis of pumped-thermal electricity storage with thermal integration and application in electric peak shaving of coal-fired power plant[J]. Energy Conversion and Management, 2022, 258: 115502. DOI: 10.1016/j.enconman.2022.115502. |
17 | ZHANG X, SUN Y, ZHAO W L, et al. The Carnot batteries thermally assisted by the steam extracted from thermal power plants: A thermodynamic analysis and performance evaluation[J]. Energy Conversion and Management, 2023, 297: 117724. DOI: 10.1016/j.enconman.2023.117724. |
[1] | Dong MO, Qiuwen LI, Yufu LU. Wind solar thermal storage collaborative low-carbon economic dispatch that adapts to wind solar volatility and dynamic peak shaving capacity of energy storage [J]. Energy Storage Science and Technology, 2025, 14(4): 1701-1708. |
[2] | Yun TAN, Ruochen DING, Xiaoyu ZHOU, Xinxing LIN, Wen SU, Bo XU, Hong WU. Thermal performance analysis of a Carnot battery driven by waste heat from a liquid-cooled data center coupled with a heat pump and a transcritical CO2 power cycle [J]. Energy Storage Science and Technology, 2025, 14(4): 1471-1480. |
[3] | Yuelin CHEN, Hongzhong MA, Muyu ZHU, Wenjing XUAN, Sihan WANG. Research on the liquid cooling technology of a lithium iron phosphate battery pack under a peak load regulation in a power grid [J]. Energy Storage Science and Technology, 2024, 13(8): 2704-2712. |
[4] | Shuai DU, Liming JIA, Zhendi LI, Zhenxing MA. Optimization configuration of distribution network operation with “photovoltaic energy storage” coupling participation in peak shaving [J]. Energy Storage Science and Technology, 2024, 13(5): 1741-1743. |
[5] | Yang DING, Hanwen WANG, Wenjie LU, Yuanjun LUO, Xiang LING. Characteristics and optimization study of an adiabatic Ca-looping Carnot battery system based on pumped thermal electricity storage [J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258. |
[6] | Yu ZHANG, Minxia LI, Jun LI, Libo YAN, Jiaxing ZHANG, Zhipeng WANG, Hua TIAN. Feasibility analysis of a Carnot battery energy storage system for waste heat recovery of liquid cooling units in data centers [J]. Energy Storage Science and Technology, 2024, 13(11): 3921-3929. |
[7] | Huaning WANG, Xinjie XUE, Mianheng ZHANG, Jiahao WANG, Bin YANG, Changying ZHAO. Experimental and numerical investigation of a packed bed latent heat storage system for Carnot batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3906-3920. |
[8] | Chengfeng ZHANG, Yilin ZHU, Dongzi HU, Zhengyang FU, Yujie XU, Guoqing SHEN, Liang WANG, Haisheng CHEN. Comprehensive economic analysis of deep peak shaving in thermal power-heat storage coupling systems [J]. Energy Storage Science and Technology, 2024, 13(10): 3693-3705. |
[9] | Yanjun BO, Xinjie XUE, Huaning WANG, Changying ZHAO. System design and experimental study of Carnot battery based on latent heat/cold stores [J]. Energy Storage Science and Technology, 2023, 12(9): 2823-2832. |
[10] | Rui HAN, Zhirong LIAO, Boxu YU, Chao XU, Xing JU. Simulation study of a molten-salt Carnot battery energy storage system for retrofitting a thermal power plant [J]. Energy Storage Science and Technology, 2023, 12(12): 3605-3615. |
[11] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[12] | Jie YANG, Fan GUO, Zijian CAO. Cost and benefit analysis of EV energy storage through V2G [J]. Energy Storage Science and Technology, 2020, 9(S1): 45-51. |
[13] | LIN Liqian, MI Zengqiang, JIA Yulong, FAN Hui, DU Peng. Distributed energy storage aggregation for power grid peak shaving in a power market [J]. Energy Storage Science and Technology, 2019, 8(2): 276-283. |
[14] | WANG Dajie, CHEN Ying, TANG Yingwei, LI Shengfei, ZHAO Sifeng. Application and research of flywheel energy storage system in electrified railway [J]. Energy Storage Science and Technology, 2018, 7(5): 853-860. |
[15] | LIU Bing1, ZHANG Jing2, LI Daixian2, NING Na2. Energy storage for peak shaving and frequency regulation in the front of meter:Progress and prospect [J]. Energy Storage Science and Technology, 2016, 5(6): 909-914. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||