Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (5): 1931-1942.doi: 10.19799/j.cnki.2095-4239.2024.1080
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yiming LI(), Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI(
), Xiaoqin SUN
Received:
2024-11-19
Revised:
2024-12-12
Online:
2025-05-28
Published:
2025-05-21
Contact:
Jie LI
E-mail:lym2844937676@163.com;lijie@csust.edu.cn
CLC Number:
Yiming LI, Jinghao YAN, Li'na XI, Xiaobing SUN, Minggao LIU, Jie LI, Xiaoqin SUN. Numerical simulation study on the thermal storage performance of eccentric tubular phase change thermal storage units filled with composite phase change materials/metal foam[J]. Energy Storage Science and Technology, 2025, 14(5): 1931-1942.
Table 3
Study of the effect of heat transfer temperature difference on heat transfer performance simulation of working conditions"
工况编号 | 换热温差 | 偏心率H |
---|---|---|
Case5 | 5 ℃ | 0 2/15 -4/15 0 2/15 -4/15 0 2/15 -4/15 |
Case7 | 5 ℃ | |
Case1 | 5 ℃ | |
Case10 | 10 ℃ | |
Case11 | 10 ℃ | |
Case12 | 10 ℃ | |
Case13 | 15℃ | |
Case14 | 15 ℃ | |
Case15 | 15 ℃ | |
Case16 | 20 ℃ | 0 |
Case17 | 20 ℃ | 2/15 |
Case18 | 20 ℃ | -4/15 |
Table 5
Optimized rate of complete melting time for different heat transfer temperature difference conditions and complete melting time compared to the heat transfer temperature difference of 5 ℃"
工况编号 | 完全熔化时间/s | 储能时间优化率/% |
---|---|---|
Case5 | 10065 | 0 |
Case10 | 6601 | 34.42 |
Case13 | 5067 | 49.66 |
Case16 | 4197 | 58.30 |
Case7 | 8821 | 0 |
Case11 | 5651 | 35.94 |
Case14 | 4327 | 50.95 |
Case17 | 3562 | 59.62 |
Case1 | 13104 | 0 |
Case12 | 8941 | 31.77 |
Case15 | 7221 | 45.66 |
Case18 | 6008 | 54.15 |
1 | 李拴魁, 林原, 潘锋. 热能存储及转化技术进展与展望[J]. 储能科学与技术, 2022, 11(5): 1551-1562. DOI: 10.19799/j.cnki.2095-4239.2021.0530. |
LI S K, LIN Y, PAN F. Research progress in thermal energy storage and conversion technology[J]. Energy Storage Science and Technology, 2022, 11(5): 1551-1562. DOI: 10.19799/j.cnki. 2095-4239.2021.0530. | |
2 | BHARATHIRAJA R, RAMKUMAR T, KARTHICK L, et al. Performance investigation on flat plate solar water collector using a hybrid nano-enhanced phase change material (PCM)[J]. Journal of Energy Storage, 2024, 86: 111163. DOI: 10.1016/j.est. 2024.111163. |
3 | HOSSEINPOUR A, POURFALLAH M, GHOLINIA M. Analysis of phase change material (PCM) melting utilizing environmentally friendly nanofluids in a double tube with spiral fins: A numerical study[J]. International Journal of Thermofluids, 2024, 22: 100620. DOI: 10.1016/j.ijft.2024.100620. |
4 | PIRASACI T, SUNOL A. Potential of phase change materials (PCM) for building thermal performance enhancement: PCM-composite aggregate application throughout Turkey[J]. Energy, 2024, 292: 130589. DOI: 10.1016/j.energy.2024.130589. |
5 | AL-ABIDI A A, MAT S, SOPIAN K, et al. Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins[J]. International Journal of Heat and Mass Transfer, 2013, 61: 684-695. DOI: 10.1016/j.ijheatmasstransfer.2013.02.030. |
6 | 吴炜, 李守成, 谢纬安. 翅片参数与PCM材料对散热器传热影响实验研究[J]. 储能科学与技术, 2021, 10(6): 2303-2311. DOI: 10.19799/j.cnki.2095-4239.2021.0426. |
WU W, LI S C, XIE W A. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator[J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. DOI: 10.19799/j.cnki.2095-4239.2021.0426. | |
7 | YE W B. Enhanced latent heat thermal energy storage in the double tubes using fins[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(1): 533-540. DOI: 10.1007/s10973-016-5870-3. |
8 | XIAO X, JIA H W, PERVAIZ S, et al. Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage[J]. ACS Applied Nano Materials, 2020, 3(6): 5240-5251. DOI: 10.1021/acsanm.0c00648. |
9 | EANEST JEBASINGH B, VALAN ARASU A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications[J]. Energy Storage Materials, 2020, 24: 52-74. DOI: 10.1016/j.ensm.2019.07.031. |
10 | 杜昭, 阳康, 舒高, 等. 金属泡沫内石蜡固液相变蓄热/放热实验[J]. 储能科学与技术, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki. 2095-4239.2021.0422. |
DU Z, YANG K, SHU G, et al. Experimental study on the heat storage and release of the solid-liquid phase change in metal-foam-filled tube[J]. Energy Storage Science and Technology, 2022, 11(2): 531-537. DOI: 10.19799/j.cnki.2095-4239. 2021.0422. | |
11 | ARAMESH M, SHABANI B. Metal foam-phase change material composites for thermal energy storage: A review of performance parameters[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111919. DOI: 10.1016/j.rser.2021.111919. |
12 | SHI J, DU H Y, CHEN Z Q, et al. Review of phase change heat transfer enhancement by metal foam[J]. Applied Thermal Engineering, 2023, 219: 119427. DOI: 10.1016/j.applthermaleng. 2022.119427. |
13 | ALHUSSENY A, AL-ZURFI N, NASSER A, et al. Impact of using a PCM-metal foam composite on charging/discharging process of bundled-tube LHTES units[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119320. DOI: 10.1016/j.ijheatmasstransfer.2020.119320. |
14 | GE R H, LI Q, LI C, et al. Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system[J]. Renewable Energy, 2022, 187: 829-843. DOI: 10.1016/j.renene.2022.01.097. |
15 | ESAPOUR M, HAMZEHNEZHAD A, ALI RABIENATAJ DARZI A, et al. Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system[J]. Energy Conversion and Management, 2018, 171: 398-410. DOI: 10.1016/j.enconman.2018.05.086. |
16 | YANG X H, XU F F, WANG X Y, et al. Solidification in a shell-and-tube thermal energy storage unit filled with longitude fins and metal foam: A numerical study[J]. Energy and Built Environment, 2023, 4(1): 64-73. DOI: 10.1016/j.enbenv.2021.08.002. |
17 | LV L Q, HUANG S Y, RONG Y, et al. Research on the thermal behavior of medium-temperature phase change materials and factors influencing the thermal performance based on a vertical shell-and-tube latent heat storage system[J]. Journal of Energy Storage, 2024, 82: 110591. DOI: 10.1016/j.est.2024.110591. |
18 | HASSANI SOUKHT ABANDANI M, DOMIRI GANJI D. Melting effect in triplex-tube thermal energy storage system using multiple PCMs-porous metal foam combination[J]. Journal of Energy Storage, 2021, 43: 103154. DOI: 10.1016/j.est. 2021. 103154. |
19 | GHAHREMANNEZHAD A, XU H J, SALIMPOUR M R, et al. Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams[J]. Applied Thermal Engineering, 2020, 179: 115731. DOI: 10.1016/j.applthermaleng.2020.115731. |
20 | LI H Y, HU C Z, HE Y C, et al. Visualized-experimental investigation on the energy storage performance of PCM infiltrated in the metal foam with varying pore densities[J]. Energy, 2021, 237: 121540. DOI: 10.1016/j.energy.2021.121540. |
21 | YANG X H, BAI Q S, ZHANG Q L, et al. Thermal and economic analysis of charging and discharging characteristics of composite phase change materials for cold storage[J]. Applied Energy, 2018, 225: 585-599. DOI: 10.1016/j.apenergy.2018.05.063. |
22 | TABASSUM T, HASAN M, BEGUM L. DynamicHeat transfer study of a triangular-shaped latent heat storage unit for the attic space of aDomestic dwel1 ing[J]. Journal of Thermal Science and Engineering Applications, 2018, 10(6): 061015. DOI: 10.1115/1.4040645. |
23 | KADIVAR M R, MOGHIMI M A, SAPIN P, et al. Annulus eccentricity optimisation of a phase-change material (PCM) horizontal double-pipe thermal energy store[J]. Journal of Energy Storage, 2019, 26: 101030. DOI: 10.1016/j.est.2019.101030. |
24 | MODI N, WANG X L, NEGNEVITSKY M. Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage[J]. Applied Thermal Engineering, 2022, 214: 118812. DOI: 10.1016/j.applthermaleng. 2022.118812. |
25 | PATEL J R, RATHOD M K, SHEREMET M. Heat transfer augmentation of triplex type latent heat thermal energy storage using combined eccentricity and longitudinal fin[J]. Journal of Energy Storage, 2022, 50: 104167. DOI: 10.1016/j.est. 2022. 104167. |
26 | MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination[J]. Applied Energy, 2017, 191: 22-34. DOI: 10.1016/j.apenergy.2016.11.036. |
27 | KRISHNAN S, MURTHY J Y, GARIMELLA S V. A two-temperature model for solid-liquid phase change in metal foams[J]. Journal of Heat Transfer, 2005, 127(9): 995-1004. DOI: 10.1115/1.2010494. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Bin YANG, Xiangjing YU, Yang ZHENG, Shixuan YANG, Qirong YANG, Daliang QIAO, Yang SUN, Youping LI. Numerical analysis of fin optimization for a shell-and-tube phase change energy storage heat exchanger [J]. Energy Storage Science and Technology, 2025, 14(4): 1394-1412. |
[3] | Zhe HUANG, Zhiming YU, Zhaojin QING, Zhaoli ZHANG. Heat transfer characteristics of spherical thermal storage units based on PW/SEBS/EG composite phase change materials in a rotating fluid medium [J]. Energy Storage Science and Technology, 2025, 14(4): 1413-1423. |
[4] | Guiyue SHI, Hailiang TAO, Zhitao ZUO, Jingxin LI, Jixiang CHEN, Jiaxi CHEN, Haisheng CHEN. Research on blade stress optimization method of axial flow compressor in compressed air energy storage system [J]. Energy Storage Science and Technology, 2025, 14(4): 1522-1532. |
[5] | Xinyi NI, Xiaomeng XU, Luowei CAO, Le LI, Xuejia YAO, Guodong JIA. Simulation of ultrasonic guided wave propagation characteristics in multilayer heterogeneous absorber tubes with non-homogeneous salt films [J]. Energy Storage Science and Technology, 2025, 14(3): 1168-1176. |
[6] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
[7] | Yixuan LIU, Xiaofen REN, Shanhu TONG, Zhiguo SHI, Xiaohui SHE. Cooling performance of air-cooled evaporator based on phase-change cold storage [J]. Energy Storage Science and Technology, 2025, 14(2): 505-514. |
[8] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
[9] | Songyan LIU, Weiliang WANG, Shiliang PENG, Junfu LYU. Thermal management system for power battery in high/low-temperature environments [J]. Energy Storage Science and Technology, 2024, 13(7): 2181-2191. |
[10] | Chenyang ZHAO, Xiaokun YU, Yubing TAO. Preparation and characterization of modified CuO nanoparticles/n-octadecane phase change material [J]. Energy Storage Science and Technology, 2024, 13(6): 1786-1793. |
[11] | Xiaofei ZHEN, Beibei WANG, Xiaohu ZHANG, Yiming SUN, Wenjiong CAO, Ti DONG. Study on the generation and diffusion law of thermal runaway gas in lithium battery energy storage system [J]. Energy Storage Science and Technology, 2024, 13(6): 1986-1994. |
[12] | Yunfeng ZHANG, Xuewen ZHANG, Wei ZHONG, Duwei JIANG, Zewei CHEN, Jie ZHANG. Numerical simulation of heat transfer performance of plate-fin radiator reinforced with double cascade phase change material of paraffin and low melting point alloy [J]. Energy Storage Science and Technology, 2024, 13(5): 1460-1470. |
[13] | Xinyu LIU, Anan ZHANG, Changjiang LIAO. Numerical simulation analysis of solid oxide fuel cells with different support structures [J]. Energy Storage Science and Technology, 2024, 13(5): 1710-1720. |
[14] | Kan ZHANG, Ting FU, Jiangbo WANG. Study on thermal equalization of spider web thermal structure based on topology optimization method [J]. Energy Storage Science and Technology, 2024, 13(5): 1721-1730. |
[15] | Dongxu HU, Shaofei ZHU, Xiaogang WEI, Yadong CUI, Baohong ZHU, Xingjian DAI, Wen LI, Haisheng CHEN. Research on mechanics and dynamics of MW-level large energy storage flywheel shafting [J]. Energy Storage Science and Technology, 2024, 13(5): 1542-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||