Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (7): 2046-2050.doi: 10.19799/j.cnki.2095-4239.2021.0717
• Energy Storage Materials and Devices • Previous Articles Next Articles
Zhiying LU1(), Shan JIANG1, Quanlong LI1, Kexin MA2, Teng FU3, Zhigang ZHENG3, Zhicheng LIU4, Miao LI4, Yongsheng LIANG4, Zhifei DONG4
Received:
2021-12-30
Revised:
2022-01-20
Online:
2022-07-05
Published:
2022-06-29
Contact:
Zhiying LU
E-mail:zhiying.lu@rongkepower.com
CLC Number:
Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery[J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050.
1 | ZHANG S, CHEN W Y. China's energy transition pathway in a carbon neutral vision[J]. Engineering, 2021: doi:10.1016/j.eng.2021.09.004. |
2 | 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用[J]. 储能科学与技术, 2021, 10(5): 1477-1485. |
CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality[J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. | |
3 | ZHAO Z M, ZHANG C K, LI X F. Opportunities and challenges of organic flow battery for electrochemical energy storage technology[J]. Journal of Energy Chemistry, 2022, 67: 621-639. |
4 | ZHANG X J, QIN C, LOTH E, et al. Arbitrage analysis for different energy storage technologies and strategies[J]. Energy Reports, 2021, 7: 8198-8206. |
5 | ZHANG Z Y, DING T, ZHOU Q, et al. A review of technologies and applications on versatile energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2021, 148: doi: 10.1016/j.rser.2021.111263. |
6 | PARASURAMAN A, LIM T M, MENICTAS C, et al. Review of material research and development for vanadium redox flow battery applications[J]. Electrochimica Acta, 2013, 101: 27-40. |
7 | SOLOVEICHIK G L. Flow batteries: Current status and trends[J]. Chemical Reviews, 2015, 115(20): 11533-11558. |
8 | WU M C, LIU M Y, LONG G F, et al. A novel high-energy-density positive electrolyte with multiple redox couples for redox flow batteries[J]. Applied Energy, 2014, 136: 576-581. |
9 | 王晓丽, 张宇, 李颖, 等. 全钒液流电池技术与产业发展状况[J]. 储能科学与技术, 2015, 4(5): 458-466. |
WANG X L, ZHANG Y, LI Y, et al. Vanadium flow battery technology and its industrial status[J]. Energy Storage Science and Technology, 2015, 4(5): 458-466. | |
10 | 刘宗浩, 张华民, 高素军, 等. 风场配套用全球最大全钒液流电池储能系统[J]. 储能科学与技术, 2014, 3(1): 71-77. |
LIU Z H, ZHANG H M, GAO S J, et al. The world's largest all-vanadium redox flow battery energy storage system for a wind farm[J]. Energy Storage Science and Technology, 2014, 3(1): 71-77. | |
11 | FRU S E, TSAFACK P, TANYI E. The exploitation of open circuit voltage parameters and energy recovery after discharge, to decipher the state of health of lead acid batteries[J]. Journal of Energy Storage, 2021, 44: doi:10.1016/j.est.2021.103477. |
12 | CHIANG Y H, SEAN W Y, KE J C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2011, 196(8): 3921-3932. |
13 | LIU H J, XU Q, YAN C W. On-line mass spectrometry study of electrochemical corrosion of the graphite electrode for vanadium redox flow battery[J]. Electrochemistry Communications, 2013, 28: 58-62. |
14 | 潘斌, 董栋, 钱东培, 等. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194. |
PAN B, DONG D, QIAN D P, et al. Quick identification of internal resistance components for lithium ion battery with LiFePO4 cathode[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(1): 189-194. | |
15 | CHEN T, DONG S J, XIE Y W. Influence of the ohmic polarization effect on thin-layer spectroelectrochemistry[J]. Journal of Electroanalytical Chemistry, 1994, 379(1/2): 239-245. |
16 | MESSAGGI M, RABISSI C, GAMBARO C, et al. Investigation of vanadium redox flow batteries performance through locally-resolved polarisation curves and impedance spectroscopy: Insight into the effects of electrolyte, flow field geometry and electrode thickness[J]. Journal of Power Sources, 2020, 449: doi:10.1016/j.jpowsour.2019.227588. |
17 | SU S C, ZHANG Q, GAO X, et al. Effects of changes in solid oxide fuel cell electrode thickness on ohmic and concentration polarizations[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16181-16190. |
[1] | RUAN Jingjing, LIU Fuyuan, LI Shenshen, GAO Guihong, LIU Yanxia. Preparation of rod-like silicon based material by carbon reduction and its application in lithium slurry batteries#br# [J]. Energy Storage Science and Technology, 0, (): 1-. |
[2] | Lulu LI, Zhengshun TAO, Tinglong PAN, Weilin YANG, Guanyang HU. Research on fractional modeling and SOC estimation strategy for lithium batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 544-551. |
[3] | Yanqi LIU, Zhaohai SONG, Tian HE, Zuoqiang DAI, Zongmin ZHENG. Research progress on integrated air electrodes for rechargeable Zn-air batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 383-397. |
[4] | Fangfang WANG, Xiangming FENG, Guangjin ZHAO, Dawei XIA, Yuxia HU, Weihua CHEN. Identification of retired power lithium-ion batteries of chemical systems by electrochemical impedance spectroscopy [J]. Energy Storage Science and Technology, 2023, 12(2): 609-614. |
[5] | Fan YANG, Jiarui HE, Ming LU, Lingxia LU, Miao YU. SOC estimation of lithium-ion batteries based on BP-UKF algorithm [J]. Energy Storage Science and Technology, 2023, 12(2): 552-559. |
[6] | Guihong GAO, Shenshen LI, Fuyuan LIU, Xiangkun WU, Yanxia LIU. Study on the influence of particle composition on the performance of lithium slurry batteries [J]. Energy Storage Science and Technology, 2023, 12(2): 329-338. |
[7] | Xueqing SHEN, Wei CHEN. Thermal management performance of batteries with embedded tree-like fins for phase transition layers [J]. Energy Storage Science and Technology, 2023, 12(2): 459-467. |
[8] | Deliu ZHANG, Yan ZHANG, Hai WANG, Jiadong WANG, Xuanwen GAO, Chaomeng LIU, Dongrun YANG, Wenbin LUO. Optimization of high nickel cathode materials for lithium ion batteries by magnesium doped heterogeneous aluminum oxide coating [J]. Energy Storage Science and Technology, 2023, 12(2): 339-348. |
[9] |
ZHANG Shun, ZENG Fanglei, LI Ning, YUAN Ningyi.
Study on preparation and properties of high flame retardant sulfur cathode
[J]. Energy Storage Science and Technology, 0, (): 1-.
|
[10] | Mengyu TIAN, Yida WU, Junfeng HAO, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Oct. 1, 2022 to Nov. 30, 2022) [J]. Energy Storage Science and Technology, 2023, 12(1): 1-15. |
[11] | Mengyang ZU, Meng ZHANG, Zikun LI, Ling HUANG. Cycle performance and degradation mechanism of Ni-Rich NCA, NCM, and NCMA [J]. Energy Storage Science and Technology, 2023, 12(1): 51-60. |
[12] | Linwang DENG, Tianyu FENG, Shiwei SHU, Bin GUO, Zifeng ZHANG. Nondestructive lithium plating online detection for lithium-ion batteries: A review [J]. Energy Storage Science and Technology, 2023, 12(1): 263-277. |
[13] | Lexian DONG, Qun ZHENG, Yue HUANG, Zhipeng TIAN, Jianping LIU, Chao WANG, Bo LIANG, Libin LEI. Research progress on cutting-edge technology of tubular solid oxide fuel cells [J]. Energy Storage Science and Technology, 2023, 12(1): 131-138. |
[14] | Wenshu ZHANG, Fangyuan HU, Hao HUANG, Xudong WANG, Man YAO. Sodium storage anode based on titanium-based MXene and its performance regulation mechanism [J]. Energy Storage Science and Technology, 2023, 12(1): 35-41. |
[15] | Ziwei YUAN, Chuyuan LIN, Ziyan YUAN, Xiaoli SUN, Qingrong QIAN, Qinghua CHEN, Lingxing ZENG. The research process on low temperature performance of zinc ion batteries [J]. Energy Storage Science and Technology, 2023, 12(1): 278-298. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||