Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (5): 1699-1706.doi: 10.19799/j.cnki.2095-4239.2023.0954
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Xinbing XIE1(), Kaiyue YANG1, Xiaozhong DU1,2(
)
Received:
2023-12-27
Revised:
2024-01-11
Online:
2024-05-28
Published:
2024-05-28
Contact:
Xiaozhong DU
E-mail:xinbing_x@126.com;xiaozhong_d@163.com
CLC Number:
Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process[J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706.
1 | LIU Y T, ZHANG R H, WANG J, et al. Current and future lithium-ion battery manufacturing[J]. iScience, 2021, 24(4): 102332. |
2 | 闫金定. 锂离子电池发展现状及其前景分析[J]. 航空学报, 2014, 35(10): 2767-2775. |
YAN J D. Current status and development analysis of lithium-ion batteries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2767-2775. | |
3 | 刘斌斌. 动力锂离子电池极片精密制造理论与实验研究[D]. 太原: 太原科技大学, 2017.LIU B B. Theoretical and experimental research on precision manufacturing of power lithium ion battery electrode[D]. Taiyuan: Taiyuan University of Science and Technology, 2017. |
4 | 李茂源, 张云, 汪正堂, 等. 锂离子电池极片制造中的微结构演化[J]. 科学通报, 2022, 67(11): 1088-1102. |
LI M Y, ZHANG Y, WANG Z T, et al. Microstructure evolutions in lithium ion battery electrode manufacturing[J]. Chinese Science Bulletin, 2022, 67(11): 1088-1102. | |
5 | SCHMIDT D, KAMLAH M, KNOBLAUCH V. Highly densified NCM-cathodes for high energy Li-ion batteries: Microstructural evolution during densification and its influence on the performance of the electrodes[J]. Journal of Energy Storage, 2018, 17: 213-223. |
6 | KANG H X, LIM C, LI T Y, et al. Geometric and electrochemical characteristics of LiNi1/3Mn1/3Co1/3O2 electrode with different calendering conditions[J]. Electrochimica Acta, 2017, 232: 431-438. |
7 | ZHANG J P, SUN J N, HUANG H G, et al. Influence of calendering process on the structural mechanics and heat transfer characteristics of lithium-ion battery electrodes via DEM simulations[J]. Particuology, 2024, 85: 252-267. |
8 | SHENG Y P, FELL C R, SON Y K, et al. Effect of calendering on electrode wettability in lithium-ion batteries[J]. Frontiers in Energy Research, 2014, 2: 56. |
9 | 徐泳, 孙其诚, 张凌, 等. 颗粒离散元法研究进展[J]. 力学进展, 2003, 33(2): 251-260. |
XU Y, SUN Q C, ZHANG L, et al. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics, 2003, 33(2): 251-260. | |
10 | CUNDALL P A. A computer model for simulating progressive, large-scale movement in blocky rock system[J]. Proceedings of the international symposium on rock mechanics, 1971, 8: 129-136. |
11 | STRACK O D L, CUNDALL P A. The distinct element method as a tool for research in granular media[R]. Department of Civil and Mineral Engineering, University of Minnesota, 1978. |
12 | 殷鹏飞, 杨圣奇, 高峰, 等. 不同节理模型在层状复合岩石离散元模拟中的应用[J]. 采矿与安全工程学报, 2023, 40(1): 164-173, 183. |
YIN P F, YANG S Q, GAO F, et al. Application of different joint models in stratified composite rock DEM simulation[J]. Journal of Mining & Safety Engineering, 2023, 40(1): 164-173, 183. | |
13 | 刘强, 卢子兴, 杨振宇, 等. 氧化硅气凝胶粉体材料力学性能的多尺度模拟[J]. 宇航材料工艺, 2014, 44(1): 33-36. |
LIU Q, LU Z X, YANG Z Y, et al. Multi-scale simulation on mechanical properties of silica aerogel powder[J]. Aerospace Materials & Technology, 2014, 44(1): 33-36. | |
14 | 刘康, 王现文, 李戬, 等. 基于DEM联用Box-Behnken响应面法优化磨煤机破碎参数[J/OL]. 矿产综合利用, 1-9. http://kns.cnki.net/kcms/detail/51.1251.TD.20230904.1609.004.html. |
LIU K, WANG X W, LI J, et al. Optimization of crushing parameters of coal mill based on DEM combined with Box-Behnken response surface method[J/OL]. Multipurpose Utilization of Mineral Resources, 1-9. http://kns.cnki.net/kcms/detail/51.1251.TD.20230904.1609.004.html. | |
15 | 陈超云, 文慧卿, 梁艳争. 基于离散元法的颗粒压实特性研究[J]. 计量学报, 2023, 44(6): 917-922. |
CHEN C Y, WEN H Q, LIANG Y Z. Study on compaction characteristics of particle based on discrete element method[J]. Acta Metrologica Sinica, 2023, 44(6): 917-922. | |
16 | SANGRÓS GIMÉNEZ C, FINKE B, NOWAK C, et al. Structural and mechanical characterization of lithium-ion battery electrodes via DEM simulations[J]. Advanced Powder Technology, 2018, 29(10): 2312-2321. |
17 | SANGRÓS GIMÉNEZ C, FINKE B, SCHILDE C, et al. Numerical simulation of the behavior of lithium-ion battery electrodes during the calendaring process via the discrete element method[J]. Powder Technology, 2019, 349: 1-11. |
18 | SANGRÓS GIMÉNEZ C, SCHILDE C, FROBÖSE L, et al. Mechanical, electrical, and ionic behavior of lithium-ion battery electrodes via discrete element method simulations[J]. Energy Technology, 2020, 8(2): 1900180. |
19 | SCHREINER D, KLINGER A, REINHART G. Modeling of the calendering process for lithium-ion batteries with DEM simulation[J]. Procedia CIRP, 2020, 93: 149-155. |
20 | GE R, CUMMING D J, SMITH R M. Discrete element method (DEM) analysis of lithium ion battery electrode structures from X-ray tomography-the effect of calendering conditions[J]. Powder Technology, 2022, 403: 117366. |
21 | ZHANG J P, HUANG H G, SUN J N. Investigation on mechanical and microstructural evolution of lithium-ion battery electrode during the calendering process[J]. Powder Technology, 2022, 409: 117828. |
22 | SANGRÓS C, SCHILDE C, KWADE A. Effect of microstructure on thermal conduction within lithium-ion battery electrodes using discrete element method simulations[J]. Energy Technology, 2016, 4(12): 1611-1619. |
23 | STERSHIC A, SIMUNOVIC S, NANDA J. Modeling the evolution of lithium-ion particle contact distributions using a fabric tensor approach[J]. Journal of Power Sources, 2015, 297: 540-550. |
24 | 张俊鹏, 孙静娜, 黄华贵, 等. 锂离子电池极片辊压异质微结构演化与性能相关性研究进展[J/OL]. 中国有色金属学报: 1-29[2024-01-18]. http://kns.cnki.net/kcms/detail/43.1238.tg.20231013.1140.005.html. |
ZHANG J P, SUN J N, HUANG H G, et al. A review of heterogeneous microstructure and performance correlation during calendering process of electrode for LIBs[J/OL]. The Chinese Journal of Nonferrous Metals: 1-29[2024-01-18]. http://kns.cnki.net/kcms/detail/43.1238.tg.20231013.1140.005.html. | |
25 | PEIRCE D, ASARO R J, NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976. |
26 | ASARO R J, NEEDLEMAN A. Overview no. 42 Texture development and strain hardening in rate dependent polycrystals[J]. Acta Metallurgica, 1985, 33(6): 923-953. |
[1] | Haiyang ZHOU, Zhendong ZHANG, Lei SHENG, Zehua ZHU, Xiaojun ZHANG, Chunfeng ZHANG. Simulation of immersion thermal performance regulation and thermal safety experimental study for energy storage lithium batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1866-1874. |
[2] | Zhoulan ZENG, Lei SHANG, Zhijin HU, Zongfan WANG, Xiaochao XIN, Ying LIU. Li5FeO4@C high capacity prelithium cathode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(5): 1875-1883. |
[3] | Ziming MO, Zongxin RAO, Jianfei YANG, Menghao YANG, Liming CAI. Construction and characteristic analysis of key parameters in a gas-thermal model for thermal runaway in lithium-ion battery based on overcharge [J]. Energy Storage Science and Technology, 2025, 14(5): 1784-1796. |
[4] | Lei PENG, Zhaopeng NI, Yue YU, Fupeng SUN, Xiulong XIA, Peng ZHANG, Sibo SUN. Experimental study on NCM lithium-ion battery electric vehicle fire caused by overcharging [J]. Energy Storage Science and Technology, 2025, 14(4): 1484-1495. |
[5] | Jiangwei SHEN, Yixin SHE, Xing SHU, Yonggang LIU, Fuxing WEI, Xuelei XIA, Zheng CHEN. State of health estimation for lithium batteries based on short-term random charging data and optimized convolutional neural network [J]. Energy Storage Science and Technology, 2025, 14(4): 1585-1595. |
[6] | Ruihao LIU, Xiaole MA, Yuxuan ZHANG, Yueying ZHU, Shiqiang LIU, Guangli BAI. Influencing factors of thermal property parameter testing of lithium-ion batteries based on accelerating rate calorimeters [J]. Energy Storage Science and Technology, 2025, 14(4): 1596-1602. |
[7] | Zuolin DONG, Jinyan SONG, Zidi MENG. Lithium-ion battery life prediction based on mode decomposition and deep learning [J]. Energy Storage Science and Technology, 2025, 14(4): 1645-1653. |
[8] | Zhiming CHEN, Aimin CHU, Ziyu ZHOU, Yuping Zhao, Youming CHEN. Preparation and performance of Li-rich cathode material by carbon-containing droplet combustion [J]. Energy Storage Science and Technology, 2025, 14(4): 1362-1368. |
[9] | Jinming YUE, Yuanli LIU, Yixia CHEN, Xiqian YU, Hong LI. Study on the separation conditions of lithium ion battery electrolyte by GC-MS detection [J]. Energy Storage Science and Technology, 2025, 14(4): 1564-1573. |
[10] | Peng WANG, Jun ZHOU, Xing WU, Tao LIU. Remaining useful life prediction of a lithium-ion battery based on a cheetah optimization-extreme learning machine with improved Sine chaotic mapping [J]. Energy Storage Science and Technology, 2025, 14(4): 1603-1616. |
[11] | Shuaibo ZENG, Yongyi LI, Jing PENG, Zixing HE, Zhuojian LIANG, Wei XU, Lingxiao LAN, Xinghua LIANG. Optimization design of conductive agent based on ternary lithium-ion battery [J]. Energy Storage Science and Technology, 2025, 14(3): 1187-1197. |
[12] | Chaolong ZHANG, Yang CHEN, Mengling LIU, Yufeng ZHANG, Guoqing HUA, Panpan YIN. A state of health estimation method for lithium-ion batteries using ICA-T features and CNN-LA-BiLSTM [J]. Energy Storage Science and Technology, 2025, 14(3): 1258-1269. |
[13] | Huiming CHEN, Yijia CAI, Wenji YIN, Meifeng CHEN, Youguo HUANG, Sijiang HU, Hongqiang WANG, Qingyu LI. Cr/Mo co-doped regulation on structure and electrochemical performance in Li-rich manganese-based cathode materials [J]. Energy Storage Science and Technology, 2025, 14(3): 1123-1132. |
[14] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[15] | Shuangming DUAN, Kuifeng XIA, Wei ZHU. Multi-stage optimization charging strategy for lithium-ion batteries considering diverse application scenarios [J]. Energy Storage Science and Technology, 2025, 14(2): 779-790. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||