Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (2): 488-496.doi: 10.19799/j.cnki.2095-4239.2024.0893
• Energy Storage Materials and Devices • Previous Articles Next Articles
Received:
2024-09-23
Revised:
2024-10-21
Online:
2025-02-28
Published:
2025-03-18
Contact:
Kaiyue ZHANG
E-mail:wh010928@qq.com;kyzhang@sylu.edu.cn
CLC Number:
Hong WANG, Kaiyue ZHANG. Study on thermal treatment activation of carbon felt electrode for all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2025, 14(2): 488-496.
1 | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(9): 2772-2780. DOI: 10. 19799/j.cnki.2095-4239.2022.0246. |
ZHANG H M. Development, cost analysis considering various durations, and advancement of vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2772-2780. DOI: 10.19799/j.cnki.2095-4239.2022.0246. | |
2 | ZHAO Z M, LIU X H, ZHANG M Q, et al. Development of flow battery technologies using the principles of sustainable chemistry[J]. Chemical Society Reviews, 2023, 52(17): 6031-6074. DOI:10. 1039/D2CS00765G. |
3 | LI Z J, LU Y C. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies[J]. Advanced Materials, 2020, 32(47): e2002132. DOI:10.1002/adma.202002132. |
4 | PAN L M, SUN J, QI H H, et al. Dead-zone-compensated design as general method of flow field optimization for redox flow batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(37): e2305572120. DOI:10.1073/pnas.2305572120. |
5 | ZHANG Z H, ZHAO T S, BAI B F, et al. A highly active biomass-derived electrode for all vanadium redox flow batteries[J]. Electrochimica Acta, 2017, 248: 197-205. DOI:10.1016/j.electacta.2017.07.129. |
6 | JIAO M L, LIU T, CHEN C J, et al. Holey three-dimensional wood-based electrode for vanadium flow batteries[J]. Energy Storage Materials, 2020, 27: 327-332. DOI:10.1016/j.ensm.2020.02.008. |
7 | ZHANG X H, ZHANG D H, XU Z Y, et al. A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2022, 439: 135718. DOI:10.1016/j.cej. 2022.135718. |
8 | MUKHOPADHYAY A, YANG Y, LI Y F, et al. Mass transfer and reaction kinetic enhanced electrode for high-performance aqueous flow batteries[J]. Advanced Functional Materials, 2019, 29(43): 1903192. DOI:10.1002/adfm.201903192. |
9 | ESTEVEZ L, REED D, NIE Z M, et al. Tunable oxygen functional groups as electrocatalysts on graphite felt surfaces for all-vanadium flow batteries[J]. ChemSusChem, 2016, 9(12): 1455-1461. DOI:10.1002/cssc.201600198. |
10 | JIANG H R, SHYY W, REN Y X, et al. A room-temperature activated graphite felt as the cost-effective, highly active and stable electrode for vanadium redox flow batteries[J]. Applied Energy, 2019, 233: 544-553. DOI:10.1016/j.apenergy. 2018.10.059. |
11 | HE Z Q, ZHOU X J, ZHANG Y, et al. Low-temperature nitrogen-doping of graphite felt electrode for vanadium redox flow batteries[J]. Journal of the Electrochemical Society, 2019, 166(12): A2336-A2340. DOI:10.1149/2.0151912jes. |
12 | ZHANG K Y, YAN C W, TANG A. Interfacial co-polymerization derived nitrogen-doped carbon enables high-performance carbon felt for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2021, 9(32): 17300-17310. DOI:10.1039/D1TA03683A. |
13 | TANG Z K, ZOU J, ZHANG D Z, et al. TixOy loaded carbon felt as high performance negative for vanadium redox flow battery[J]. Journal of Power Sources, 2023, 566: 232925. DOI:10.1016/j.jpowsour.2023.232925. |
14 | ZHANG X Y, VALENCIA A, LI W L, et al. Decoupling activation and transport by electron-regulated atomic-Bi harnessed surface-to-pore interface for vanadium redox flow battery[J]. Advanced Materials, 2024, 36(6): e2305415. DOI:10.1002/adma.202305415. |
15 | 陈娜, 白家骏, 张丽, 等. 铋改性液流电池用碳材料电极的研究现状[J]. 沈阳理工大学学报, 2023, 42(5): 47-55, 61. DOI: 10.3969/j.issn.1003-1251.2023.05.008. |
CHEN N, BAI J J, ZHANG L, et al. Research status of bismuth-modified carbon material electrode for redox flow battery[J]. Journal of Shenyang Ligong University, 2023, 42(5): 47-55, 61. DOI: 10.3969/j.issn.1003-1251.2023.05.008. | |
16 | GUO J C, PAN L M, SUN J, et al. Metal-free fabrication of nitrogen-doped vertical graphene on graphite felt electrodes with enhanced reaction kinetics and mass transport for high-performance redox flow batteries[J]. Advanced Energy Materials, 2024, 14(1): 2302521. DOI:10.1002/aenm.202302521. |
17 | DENG Q, HUANGYANG X Y, ZHANG X, et al. Edge-rich multidimensional frame carbon as high-performance electrode material for vanadium redox flow batteries[J]. Advanced Energy Materials, 2022, 12(8): 2103186. DOI:10.1002/aenm.202103186. |
18 | ZHANG K Y, WANG H, ZHANG X H, et al. Controlled construction of a N-doped carbon nanotube network endows carbon felt with superior performances for high-rate vanadium flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(19): 7318-7328. DOI:10.1021/acssuschemeng.4c00046. |
19 | PEZESHKI A M, CLEMENT J T, VEITH G M, et al. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation[J]. Journal of Power Sources, 2015, 294: 333-338. DOI:10.1016/j.jpowsour.2015.05.118. |
20 | EIFERT L, BANERJEE R, JUSYS Z, et al. Characterization of carbon felt electrodes for vanadium redox flow batteries: Impact of treatment methods[J]. Journal of the Electrochemical Society, 2018, 165(11): A2577-A2586. DOI:10.1149/2.0531811jes. |
21 | ZHANG H, CHEN N, SUN C Y, et al. Investigations on physicochemical properties and electrochemical performance of graphite felt and carbon felt for iron-chromium redox flow battery[J]. International Journal of Energy Research, 2020, 44(5): 3839-3853. DOI:10.1002/er.5179. |
22 | GHIMIRE P C, SCHWEISS R, SCHERER G G, et al. Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries[J]. Carbon, 2019, 155: 176-185. DOI:10.1016/j.carbon. 2019.08.068. |
23 | GRECO K V, FORNER-CUENCA A, MULARCZYK A, et al. Elucidating the nuanced effects of thermal pretreatment on carbon paper electrodes for vanadium redox flow batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44430-44442. DOI:10.1021/acsami.8b15793. |
24 | KAUR A, JEONG K I, KIM S S, et al. Optimization of thermal treatment of carbon felt electrode based on the mechanical properties for high-efficiency vanadium redox flow batteries[J]. Composite Structures, 2022, 290: 115546. DOI:10.1016/j.compstruct.2022.115546. |
25 | 李倩. Fe/Cr液流电池用石墨毡电极材料的制备与改性研究[D]. 大连: 大连理工大学, 2014. |
LI Q. Study on preparation and modification of graphite felt electrode material for Fe/Cr flow battery[D]. Dalian: Dalian University of Technology, 2014. | |
26 | 闫时建, 郭锦, 同阳, 等. 用于一体化电极的碳布改性综述[J]. 电池, 2024, 54(1): 121-125. DOI: 10.19535/j.1001-1579.2024.01.027. |
YAN S J, GUO J, TONG Y, et al. Review of modification of carbon cloth for integrated electrodes[J]. Dianchi(Battery Bimonthly), 2024, 54(1): 121-125. DOI: 10.19535/j.1001-1579. 2024.01.027. | |
27 | ZHANG K Y, YAN C W, TANG A. Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries[J]. Energy Storage Materials, 2021, 34: 301-310. DOI:10.1016/j.ensm.2020.10.005. |
[1] | Yuelin LI, Zhiyu LIU, Sen GUO, Xiaojun LIU, Pengliang ZHANG, Chengcheng WANG, Yuan LIANG, Rui WANG. Research progress on electrode structure design of vanadium redox flow battery [J]. Energy Storage Science and Technology, 2025, 14(2): 601-612. |
[2] | Tong LIU, Guiting YANG, Hui BI, Yueni MEI, Shuo LIU, Yongji GONG, Wenlei LUO. Recent progress in high-energy and high-power lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 54-76. |
[3] | Yijie YAO, Junwei ZHANG, Yanjun ZHAO, Hongcheng LIANG, Dongni ZHAO. Effect of interfacial dynamics on low temperature performance of sodium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(1): 30-41. |
[4] | Kaiyue YANG, Xinbing XIE, Xiaozhong DU. Exploration of lithium battery electrode calendering process based on discrete element method [J]. Energy Storage Science and Technology, 2024, 13(8): 2570-2579. |
[5] | Yinan HE, Kai ZHANG, Junwu ZHOU, Xinyang WANG, Bailin ZHENG. Influence of external loads on the cycling performance of silicon anode lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(8): 2559-2569. |
[6] | Sen JIANG, Long CHEN, Chuangchao SUN, Jinze WANG, Ruhong LI, Xiulin FAN. Low-temperature lithium battery electrolytes: Progress and perspectives [J]. Energy Storage Science and Technology, 2024, 13(7): 2270-2285. |
[7] | Haotian WANG, Yonggang WANG, Xiaoli DONG. Advances in low-temperature organic batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2259-2269. |
[8] | Zeheng LI, Lei XU, Yuxing YAO, Chong YAN, Ximin ZHAI, Xuechun HAO, Aibing CHEN, Jiaqi HUANG, Xiaofei BIE, Huanli SUN, Lizhen FAN, Qiang ZHANG. A review of electrolyte reducing lithium plating in low-temperature lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2192-2205. |
[9] | Shuping WANG, Xiankun YANG, Changhao LI, Ziqi ZENG, Yifeng CHENG, Jia XIE. Diethyl ethylphosphonate-based flame-retardant wide-temperature-range electrolyte in lithium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2161-2170. |
[10] | Ran XU, Baodong WANG, Shaoliang WANG, Qi ZHANG, Lei ZHANG, Ziyang FENG. Research progress on heteroatom-doped electrodes used in all vanadium redox flow batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1849-1860. |
[11] | Jianhang YANG, Wenting FENG, Junwei HAN, Xinru WEI, Chenyu MA, Changming MAO, Linjie ZHI, Debin KONG. Recent advances in rechargeable Li/Na-Cl2 batteries: From material construction to performance evaluation [J]. Energy Storage Science and Technology, 2024, 13(6): 1824-1834. |
[12] | Cong SUO, Yangfeng WANG, Zichen ZHU, Yan YANG. Research progress of soft carbon as negative electrodes in sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1807-1823. |
[13] | Zhonghao ZHANG, Diankai QIU, Linfa PENG, Peiyun YI. Study on high dispersion technology of bifunctional oxygen electrodes in proton exchange membrane unitized regenerative fuel cells [J]. Energy Storage Science and Technology, 2024, 13(5): 1417-1426. |
[14] | Xinbing XIE, Kaiyue YANG, Xiaozhong DU. Mechanical behavior and structure of lithium-ion battery electrode calendering process [J]. Energy Storage Science and Technology, 2024, 13(5): 1699-1706. |
[15] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||