Energy Storage Science and Technology ›› 2024, Vol. 13 ›› Issue (11): 3784-3795.doi: 10.19799/j.cnki.2095-4239.2024.0432
• Energy Storage Materials and Devices • Previous Articles Next Articles
Boyu LIU(), Qing PANG, Tengfei WANG, Hongyu WANG()
Received:
2024-05-15
Revised:
2024-06-03
Online:
2024-11-28
Published:
2024-11-27
Contact:
Hongyu WANG
E-mail:lby1755825225@163.com;HYuWang26@163.com
CLC Number:
Boyu LIU, Qing PANG, Tengfei WANG, Hongyu WANG. Advancements in the modification of high-voltage Ni-rich ternary cathode material LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 3784-3795.
Table 1
Summary of doping modification strategy of high voltage NCM811"
掺杂元素 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
Mg | 增加锂离子扩散通道 | 226.1 | 350 | 81% | 3.0~4.5 | [ |
Ti | 增大晶格常数 | 196(0.5 C) | 100 | 84% | 2.8~4.6 | [ |
Nb | 抑制阳离子混排 | 222.3 | 100 | 92.3% | 2.8~4.6 | [ |
Al | 抑制阳离子混排 | 174 | 100 | 86.6% | 3.0~4.3 | [ |
Mo | 抑制阳离子混排 | 202.4(0.2 C) | 200 | 94.4% | 2.7~4.3 | [ |
Fe | 抑制阳离子混排 | 211.4 | 500 | 77.5% | 2.7-4.5 | [ |
La&Al | 强化体相结构 | 192.7 | 100 | 97.2% | 3.0~4.4 | [ |
In&Sn | 抑制阳离子混排 | 202 | 100 | 90% | 2.7~4.5 | [ |
Table 2
Summary of coating modification strategy of high voltage NCM811"
包覆层 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
FePO4 | 提高电导率 | 218.8 | 100 | 97% | 2.7~4.5 | [ |
LaFeO3 | 保护正极 | 215.4 | 80 | 64.6% | 3.0~4.5 | [ |
La x Ca1-x [TM]O3-x | 提高电导率 | 225 | 1000 | 88.3% | 2.7~4.5 | [ |
LBO | 提高离子导电率 | 207.8 | 100 | 82.1% | 2.7~4.5 | [ |
LMNCO | 提高离子电导率 | 230.8 | 500 | 83.4% | 2.7~4.6 | [ |
LiF | 抑制结构退化 | 223 | 100 | 85% | 3.0~4.6 | [ |
LiAlF 4 | 提高电导率 | 206 | 100 | 95.7% | 2.7~4.5 | [ |
Table 3
Summary of composite modification strategies for high voltage NCM811"
复合方式 | 主要作用 | 放电比容量/(mAh/g) | 循环次数 | 容量保持率 | 电压范围(vs. Li/Li+)/V | 参考文献 |
---|---|---|---|---|---|---|
Co氧化物层和Ti掺杂 | 提高电导率 | 121(20 C) | 400 | 92% | 2.7~4.7 | [ |
Sr基涂层和体掺杂 | 抑制晶格氧缺失 | 295.4 | 100 | 82.3% | 2.7~4.5 | [ |
La2Ni0.5Li0.5O4涂层和La3+掺杂 | 抑制副反应 | 229(0.2 C) | 200 | 90.1% | 2.7~4.7 | [ |
Sb-Sb2O3 | 提高离子导电率 | 196 | 100 | 89.3% | 2.75~4.4 | [ |
梯度掺杂Nb,LiNbO3包覆 | 稳定晶体结构 | 214.8 | 300 | 85.1% | 3.0~4.4 | [ |
Li2SnO3包覆,Sn4+梯度掺杂 | 稳定结构 | 218.4 | 200 | 86.5% | 3.0~4.5 | [ |
1 | MAYER A. Fossil fuel dependence and energy insecurity[J]. Energy, Sustainability and Society, 2022, 12(1): 27. DOI: 10.1186/s13705-022-00353-5. |
2 | XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499. DOI: 10.1038/s41467-020-16259-9. |
3 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. DOI: 10.1038/s41586-019-1682-5. |
4 | CLARKE M, ALONSO J J. Lithium-ion battery modeling for aerospace applications[J]. Journal of Aircraft, 2021, 58(6): 1323-1335. DOI: 10.2514/1.c036209. |
5 | MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. DOI: 10. 1038/s41467-020-15355-0. |
6 | 朱树豪, 姚锐, 肖承翔, 等. 锂/钠离子电池中铁基氟化物正极材料的研究进展[J]. 材料研究与应用, 2023, 17(5): 864-873. DOI: 10.20038/j.cnki.mra.2023.000507. |
ZHU S H, YAO R, XIAO C X, et al. Recent progress of iron-based fluoride cathodes in lithium/sodium ion batteries[J]. Materials Research and Application, 2023, 17(5): 864-873. DOI: 10.20038/j.cnki.mra.2023.000507. | |
7 | WEI H X, TANG L B, HUANG Y D, et al. Comprehensive understanding of Li/Ni intermixing in layered transition metal oxides[J]. Materials Today, 2021, 51: 365-392. DOI: 10.1016/j.mattod.2021.09.013. |
8 | ZHANG W J. Structure and performance of LiFePO4 cathode materials: A review[J]. Journal of Power Sources, 2011, 196(6): 2962-2970. DOI: 10.1016/j.jpowsour.2010.11.113. |
9 | JULIEN C M, MAUGER A. NCA, NCM811, and the route to Ni-richer lithium-ion batteries[J]. Energies, 2020, 13(23): 6363. DOI: 10.3390/en13236363. |
10 | WANG B, ZHANG F L, ZHOU X N, et al. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries?[J]. Journal of Materials Chemistry A, 2021, 9(23): 13540-13551. DOI: 10.1039/D1TA01128F. |
11 | NOH H J, YOUN S, YOON C S, et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. DOI: 10.1016/j.jpowsour.2013.01.063. |
12 | LI G X, XU R Y, CHU B B, et al. Electrochemical oxygen evolution coupled structure and capacity decay of single-crystal LiNi0.6Co0.2Mn0.2O2 cathode materials[J]. Journal of Power Sources, 2024, 589: 233714. DOI: 10.1016/j.jpowsour. 2023.233714. |
13 | KIM J, LEE H, CHA H, et al. Prospect and reality of Ni-rich cathode for commercialization[J]. Advanced Energy Materials, 2018, 8(6): 1702028. DOI: 10.1002/aenm.201702028. |
14 | CHENG F Y, ZHANG X Y, WEI P, et al. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries[J]. Science Bulletin, 2022, 67(21): 2225-2234. DOI: 10.1016/j.scib.2022.10.007. |
15 | TAN X R, ZHANG M L, LI J, et al. Recent progress in coatings and methods of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials: A short review[J]. Ceramics International, 2020, 46(14): 21888-21901. DOI: 10.1016/j.ceramint.2020.06.091. |
16 | LI W D, LIU X M, XIE Q, et al. Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries: An in-depth diagnostic study[J]. Chemistry of Materials, 2020, 32(18): 7796-7804. DOI: 10.1021/acs.chemmater.0c02398. |
17 | HAN D Y, WENG J Z, ZHANG X, et al. Review — Revealing the intercrystalline cracking mechanism of NCM and some regulating strategies[J]. Journal of the Electrochemical Society, 2022, 169(4): 040512. DOI: 10.1149/1945-7111/ac60ee. |
18 | WANG L M, SU Q M, HAN B, et al. Unraveling the degradation mechanism of LiNi0.8Co0.1Mn0.1O2 at the high cut-off voltage for lithium ion batteries[J]. Journal of Energy Chemistry, 2023, 77: 428-437. DOI: 10.1016/j.jechem. 2022. 11.016. |
19 | TAN X R, ZHANG M L, ZHANG D Y, et al. Inhibited intracrystalline cracks and enhanced electrochemical properties of NCM811 cathode materials coated by EPS[J]. Ceramics International, 2021, 47(23): 32710-32719. DOI: 10.1016/j.ceramint.2021.08.167. |
20 | XU C, REEVES P J, JACQUET Q, et al. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries[J]. Advanced Energy Materials, 2021, 11(7): 2003404. DOI: 10.1002/aenm.202003404. |
21 | JUNG R, METZGER M, MAGLIA F, et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2(NMC) cathode materials for Li-ion batteries[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. DOI: 10.1149/2.0021707jes. |
22 | JUNG S K, GWON H, HONG J, et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): DOI: 10.1002/aenm.201300787. |
23 | MAHNE N, FONTAINE O, THOTIYL M O, et al. Mechanism and performance of lithium-oxygen batteries-A perspective[J]. Chemical Science, 2017, 8(10): 6716-6729. DOI: 10.1039/C7SC02519J. |
24 | 占佳琦, 邢丽丹. 锂离子电池正极材料过渡金属离子溶出的危害及抑制研究[J]. 材料研究与应用, 2023, 17(5): 902-911. DOI: 10.20038/j.cnki.mra.2023.000510. |
ZHAN J Q, XING L D. Study on the detriment and inhibition of the dissolution of transition metal ions in cathode materials of lithium-ion batteries[J]. Materials Research and Application, 2023, 17(5): 902-911. DOI: 10.20038/j.cnki.mra.2023.000510. | |
25 | ASL H Y, MANTHIRAM A. Reining in dissolved transition-metal ions[J]. Science, 2020, 369(6500): 140-141. DOI: 10.1126/science.abc5454. |
26 | LIU T C, YU L, LIU J J, et al. Understanding Co roles towards developing co-free Ni-rich cathodes for rechargeable batteries[J]. Nature Energy, 2021, 6: 277-286. DOI: 10.1038/s41560-021-00776-y. |
27 | ZHANG N S, WANG B, CHEN M, et al. Revisiting the impact of Co at high voltage for advanced nickel-rich cathode materials[J]. Energy Storage Materials, 2024, 67: 103311. DOI: 10.1016/j.ensm.2024.103311. |
28 | LASZCZYNSKI N, SOLCHENBACH S, GASTEIGER H A, et al. Understanding electrolyte decomposition of graphite/NCM811 cells at elevated operating voltage[J]. Journal of the Electrochemical Society, 2019, 166(10): A1853-A1859. DOI: 10.1149/2.0571910jes. |
29 | LIU X L, WANG S, WANG L, et al. Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping[J]. Journal of Power Sources, 2019, 438: 227017. DOI: 10.1016/j.jpowsour.2019.227017. |
30 | SUN H B, CAO Z L, WANG T R, et al. Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping[J]. Materials Today Energy, 2019, 13: 145-151. DOI: 10.1016/j.mtener.2019.05.003. |
31 | ZHAO T T, LIU P, TANG F L, et al. Design of Nb5+-doped high-nickel layered ternary cathode material and its structure stability[J]. Nanotechnology, 2023, 34(49): 495401. DOI: 10.1088/1361-6528/acf670. |
32 | TAKAMORI S, DOI T, INABA M. Aluminum doping effects on large LiNi0.8Co0.1Mn0.1O2 single crystal particles prepared in a molten LiOH-Li2SO4 flux[J]. Journal of the Electrochemical Society, 2023: DOI: 10.1149/1945-7111/acbc51. |
33 | ZHU H W, YU H F, JIANG H B, et al. High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Li-ion batteries[J]. Chemical Engineering Science, 2020, 217: 115518. DOI: 10.1016/j.ces.2020.115518. |
34 | ZHA G J, HU N G, LUO Y P, et al. Reducing Ni/Li disorder and boosting electrochemical performance of LiNi0.8Co0.067Fe0.033Mn0.1O2 cathode material[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 144: 104730. DOI: 10.1016/j.jtice.2023.104730. |
35 | LAINE P, HIETANIEMI M, VÄLIKANGAS J, et al. Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)2: Effect of magnesium doping and washing on the battery cell performance[J]. Dalton Transactions, 2023, 52(5): 1413-1424. DOI: 10.1039/d2dt02246j. |
36 | YANG J C, CHEN Y X, LI Y J, et al. A simple strategy to prepare the La2Li0.5Al0.5O4 modified high-performance Ni-rich cathode material[J]. Materials Chemistry and Physics, 2020, 249: 123135. DOI: 10.1016/j.matchemphys.2020.123135. |
37 | LYU Y, HUANG S F, LU S R, et al. Engineering of cobalt-free Ni-rich cathode material by dual-element modification to enable 4.5 V-class high-energy-density lithium-ion batteries[J]. Chemical Engineering Journal, 2023, 455: 140652. DOI: 10.1016/j.cej.2022.140652. |
38 | TAO J L, MU A N, GENG S J, et al. Influences of direction and magnitude of Mg2+ doping concentration gradient on the performance of full concentration gradient cathode material[J]. Journal of Solid State Electrochemistry, 2021, 25(7): 1959-1974. DOI: 10.1007/s10008-021-04984-0. |
39 | LIN Y, ABRAM C M, SHI X, et al. Enhanced thermal stability of aerosol-synthesized Ni-rich Li-ion battery cathode materials via concentration-gradient Ca doping[J]. ACS Applied Energy Materials, 2022, 5(9): 10751-10757. DOI: 10.1021/acsaem.2c01471. |
40 | ZHANG H L, XU J Q, ZHANG J J. Surface-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode materials by Al2O3, ZrO2, and Li2O-2B2O3 thin-layers for improving the performance of lithium ion batteries[J]. Frontiers in Materials, 2019, 6: 309. DOI: 10.3389/fmats. 2019.00309. |
41 | HOU Y Z, REN Y B, SHI T S, et al. The surface Al2O3 coating and bulk Zr doping drastically improve the voltage fade and cycling stability of Li(Ni0.8Mn0.1Co0.1)O2 cathode materials[J]. Journal of Alloys and Compounds, 2023, 939: 168778. DOI: 10.1016/j.jallcom.2023.168778. |
42 | KIM H K, KANG H S, SANTHOSHKUMAR P, et al. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 with perovskite LaFeO3 for high voltage cathode materials[J]. RSC Advances, 2021, 11(35): 21685-21694. DOI: 10.1039/D1RA00857A. |
43 | WANG Z, WEI W, ZHANG T, et al. Perovskite oxides alleviate microstrain and anion loss of radially-aligned Ni-rich Ncm811 cathodes under high-voltage operations[J]. Small, 2024, 20(4): e2306160. DOI: 10.1002/smll.202306160. |
44 | ZHA G J, LUO Y P, HU N G, et al. Surface modification of the LiNi0.8Co0.1Mn0.1O2 cathode material by coating with FePO4 with a yolk-shell structure for improved electrochemical performance[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36046-36053. DOI: 10.1021/acsami.0c07931. |
45 | GAN Z G, LU Y, HU G R, et al. Surface modification on enhancing the high-voltage performance of LiNi0.8Co0.1Mn0.1O2 cathode materials by electrochemically active LiVPO4F hybrid[J]. Electrochimica Acta, 2019, 324: 134807. DOI: 10.1016/j.electacta.2019.134807. |
46 | RAN Q W, ZHAO H Y, HU Y Z, et al. Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9268-9276. DOI: 10.1021/acsami.9b20872. |
47 | DU M L, YANG P, HE W X, et al. Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3[J]. Journal of Alloys and Compounds, 2019, 805: 991-998. DOI: 10.1016/j.jallcom.2019.07.176. |
48 | LLANOS P S, AHALIABADEH Z, MIIKKULAINEN V, et al. High voltage cycling stability of LiF-coated NMC811 electrode[J]. ACS Applied Materials & Interfaces, 2024, 16(2): 2216-2230. DOI: 10.1021/acsami.3c14394. |
49 | DONG X Y, YAO J Y, ZHU W C, et al. Enhanced high-voltage cycling stability of Ni-rich cathode materials via the self-assembly of Mn-rich shells[J]. Journal of Materials Chemistry A, 2019, 7(35): 20262-20273. DOI: 10.1039/C9TA07147D. |
50 | CHU Y Q, LAI A J, PAN Q C, et al. Construction of internal electric field to suppress oxygen evolution of Ni-rich cathode materials at a high cutoff voltage[J]. Journal of Energy Chemistry, 2022, 73: 114-125. DOI: 10.1016/j.jechem.2022.06.019. |
51 | XIE J, SENDEK A D, CUBUK E D, et al. Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling[J]. ACS Nano, 2017, 11(7): 7019-7027. DOI: 10.1021/acsnano.7b02561. |
52 | ZHANG X Y, QIU Y G, CHENG F Y, et al. Realization of a high-voltage and high-rate nickel-rich NCM cathode material for LIBs by Co and Ti dual modification[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17707-17716. DOI: 10.1021/acsami. 1c03195. |
53 | WU F, LI Q, CHEN L, et al. Improving the structure stability of LiNi0.8Co0.1Mn0.1O2 by surface perovskite-like La2Ni0.5Li0.5O4 self-assembling and subsurface La3+ doping[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36751-36762. DOI: 10.1021/acsami.9b12595. |
54 | WANG L C, CHU Y Q, NONG Y T, et al. Sr-based sub/surface integrated layer and bulk doping to enhance high-voltage cycling of a Ni-rich cathode material[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(24): 7883-7895. DOI: 10.1021/acssuschemeng.2c00369. |
55 | LI Y J, ZHU J, DENG S Y, et al. Towards superior cyclability of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium ion batteries via synergetic effects of Sb modification[J]. Journal of Alloys and Compounds, 2019, 798: 93-103. DOI: 10.1016/j.jallcom. 2019.05.217. |
56 | KANG C Y, OH S, SHIM T Y, et al. Boosting electrochemical performance of Ni-rich layered cathode via Li2SnO3 surface coating and Sn4+ gradient doping based dual modification for lithium-ion batteries[J]. Electronic Materials Letters, 2023, 19(4): 374-383. DOI: 10.1007/s13391-023-00414-7. |
57 | TIAN J S, WANG G, ZENG W H, et al. A bimetal strategy for suppressing oxygen release of 4.6 V high-voltage single-crystal high-nickel cathode[J]. Energy Storage Materials, 2024, 68: 103344. DOI: 10.1016/j.ensm.2024.103344. |
58 | SUN Y K, CHEN Z H, NOH H J, et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-947. DOI: 10.1038/nmat3435. |
59 | ZHAO F, LI X Y, YAN Y S, et al. A three-in-one engineering strategy to achieve LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced high-voltage cycle stability and high-rate capacities towards lithium storage[J]. Journal of Power Sources, 2022, 524: 231035. DOI: 10.1016/j.jpowsour.2022.231035. |
[1] | Xinxin ZHANG, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Qiangfu SUN, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xueji HUANG. In-depth review of 100 pioneering studies on lithium batteries: Key innovations from June 1, 2024 to July 31, 2024 [J]. Energy Storage Science and Technology, 2024, 13(9): 3226-3244. |
[2] | Xiaoyu CHEN, Yu LIU, Yifan BAI, Jiajun YING, Ying LV, Lijia WAN, Junping HU, Xiaoling Chen. Preparation and performance of nickel cobalt hydroxide cathode material for nickel zinc batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2377-2385. |
[3] | Weiqi LIN, Qiaoyu LU, Yuhong CHEN, Linyuan QIU, Yurong JI, Lianyu GUAN, Xiang DING. Advances in cathode materials for low-temperature sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(7): 2348-2360. |
[4] | Junfeng HAO, Jing ZHU, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Qiangfu SUN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. A review of 100 selected recent studies on lithium batteries (April 1, 2024—May 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(7): 2361-2376. |
[5] | Wanrui LI, Wenjun LI, Xiaoqing WANG, Shengli LU, Xilian XU. Research progress of manganese/vanadium-based oxide heterostructure cathodes for zinc-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(5): 1496-1515. |
[6] | Yinbao MIAO, Wenhua ZHANG, Weihao LIU, Shuai WANG, Zhe CHEN, Wang PENG, Jie ZENG. Preparation and performance of lithium-rich cathode material Li1.2Ni0.13Co0.13Mn0.54O2 [J]. Energy Storage Science and Technology, 2024, 13(5): 1427-1434. |
[7] | Jing ZHU, Junfeng HAO, Qiangfu SUN, Xinxin ZHANG, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2024 to Mar. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(5): 1398-1416. |
[8] | Zhipeng WEN, Kai PAN, Yi WEI, Jiawen GUO, Shanli QIN, Wen JIANG, Lian WU, Huan LIAO. Research progress in lithium manganese iron phosphate cathode material modification [J]. Energy Storage Science and Technology, 2024, 13(3): 770-787. |
[9] | Qiangfu SUN, Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2023 to Jan. 31, 2024) [J]. Energy Storage Science and Technology, 2024, 13(3): 725-741. |
[10] | Ke PENG, Zhicheng ZHANG, Youzhang HU, Xuhui ZHANG, Jiahui ZHOU, Bin LI. Finite element-based motion analysis and optimization of sagger in thermo-mechanical coupling field [J]. Energy Storage Science and Technology, 2024, 13(2): 634-642. |
[11] | Xiuli GUO, Xiaolong ZHOU, Caineng ZOU, Yongbing TANG. Research progress and perspectives of aqueous dual-ions batteries [J]. Energy Storage Science and Technology, 2024, 13(2): 462-479. |
[12] | Cuihong ZENG, Xiujuan CHEN, Man LI, Wenji YIN, Jiming PENG, Sijiang HU, Youguo HUANG, Hongqiang WANG, Qingyu LI. Investigation of W-doped P2-Na0.6Li0.27Mn0.73O2 cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(11): 3731-3741. |
[13] | Qiangfu SUN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Junfeng HAO, Xinxin ZHANG, Mengyu TIAN, Zhou JIN, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Hong ZHOU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2024 to Sep. 30, 2024) [J]. Energy Storage Science and Technology, 2024, 13(11): 4207-4225. |
[14] | Shun LI, Jianguo HUANG, Guijin HE. Lignin-based carbon/sulfur nanosphere composite as a cathode material for high-performance lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2024, 13(1): 270-278. |
[15] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||