Energy Storage Science and Technology ›› 2025, Vol. 14 ›› Issue (9): 3622-3635.doi: 10.19799/j.cnki.2095-4239.2025.0203
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Jijin LIN1(), Qian LIU1, Tao QU2, Jingkun LI2, Dongyong HUANG2, Xiaoqing ZHU1, Xing JU1(
)
Received:
2025-02-28
Revised:
2025-04-07
Online:
2025-09-28
Published:
2025-09-05
Contact:
Xing JU
E-mail:120242202501@ncepu.edu.cn;scottju@ncepu.edu.cn
CLC Number:
Jijin LIN, Qian LIU, Tao QU, Jingkun LI, Dongyong HUANG, Xiaoqing ZHU, Xing JU. Technical and economic analysis of liquid immersion cooling for lithium-ion battery energy storage system[J]. Energy Storage Science and Technology, 2025, 14(9): 3622-3635.
Table 2
Calculation formula and results of each physical quantity of energy storage container[11-13]"
项目 | 符号 | 计算公式 | 数值 |
---|---|---|---|
电池集装箱的发热功率 | P1 | P1=I2R | 43200 W |
电池集装箱的温升热量 | Qx | Q=cm∆t | 91584 kJ |
电池集装箱的冷却功率 | P2x | P2=k(p1-Q/t2) | 39624 W |
当量天空温度 | ts | ts=0.0552(te+273)15-273 | 24 ℃ |
太阳辐射当量温度 | tsol,eq | tsol,eq=ρIH/αe | 48.35 ℃ |
辐射换热系数 | αer | 5.0 | |
天空辐射当量温度 | tsky,eq | tsky,eq=αer(te-ts)(1-CHH-CMM)/αe | 7.85 ℃ |
天空辐射修正系数 | ε | ε=1+(tsky,eq-tsol,eq)/(ti-te) | 7.75 |
辐射净输入热量 | Pnet | Pnet=εKTS∆t2 | 5900 W |
电池集装箱总发热量 | P | P=P2x+Pnet | 48826 W |
Table 3
The meanings and values of symbols in Table 2[11-13]"
符号 | 含义 | 数值 |
---|---|---|
P1 | 电池集装箱的发热功率 | 43200 W |
C | 电池的比热容 | 1 kJ/(kg·K) |
m | 电池质量 | 5.3 kg |
∆t1 | 电池温升 | 5 ℃ |
k | 安全系数 | 1.3 |
t2 | 充放电时间 | 2h |
te | 室外干球温度 | 34 ℃ |
ρ | 外表面的太阳辐射吸收系数 | 0.25 |
IH | 水平面的太阳辐射照度 | 967 W/m2 |
αe | 外部对流换热系数 | 5 W/(m2·K) |
ε | 半球发射率 | 0.8 |
CH | 低云量修正系数 | 0.68 |
H | 低云量昼夜平均值 | 0.13 |
CM | 中云量修正系数 | 0.47 |
M | 中云量昼夜平均值 | 0.27 |
ti | 室内干球温度 | 28 ℃ |
KT | 集装箱的换热系数 | 2.3461 W/(m2·K) |
S | 箱体换热面积 | 67.07 m2 |
∆t2 | 箱体内外温差 | 30 ℃ |
Table 5
Comparison of cost differences of immersion cooling energy storage system (Unit: million CNY)[14-17]"
项目 | 整包浸没的储能柜系统 | 整簇浸没的储能柜系统 | 整包浸没的储能集装箱系统 | 整簇浸没的储能集装箱系统 |
---|---|---|---|---|
电池模组 | 12.49 | 11.99 | 260.20 | 241.50 |
储能逆变器(PCS) | 1.86 | 1.79 | 38.84 | 36.04 |
能量管理系统(EMS) | 0.37 | 0.36 | 7.77 | 7.21 |
变压器 | 1.12 | 1.07 | 23.30 | 21.63 |
组装成本 | 0.56 | 0.54 | 11.65 | 10.81 |
电缆 | 0.56 | 0.54 | 11.65 | 10.81 |
电池管理系统(BMS) | 1.68 | 1.61 | 34.95 | 32.44 |
浸没液(碳氢浸没液) | 1.75 | 2.50 | 21.00 | 40.00 |
热管理回路 | 1.13 | 1.03 | 11.06 | 9.20 |
总价 | 21.51 | 21.42 | 420.42 | 409.64 |
[1] | 卢乙彬, 邵双全, 蔡贵立. 基于浸没式液冷技术的储能电池仿真与理论研究[J]. 电信工程技术与标准化, 2023, 36(S1): 134-138. DOI: 10.13992/j.cnki.tetas.2023.s1.034. |
LU Y B, SHAO S Q, CAI G L. Simulation and theoretical research on energy storage batteries based on immersion liquid cooling technology[J]. Telecom Engineering Technics and Standardization, 2023, 36(S1): 134-138. DOI: 10.13992/j.cnki.tetas.2023.s1.034. | |
[2] | SATYANARAYANA G, RUBEN SUDHAKAR D, MUTHYA GOUD V, et al. Experimental investigation and comparative analysis of immersion cooling of lithium-ion batteries using mineral and therminol oil[J]. Applied Thermal Engineering, 2023, 225: 120187. DOI: 10.1016/j.applthermaleng.2023.120187. |
[3] | LI Y, BAI M L, ZHOU Z F, et al. Experimental investigations of liquid immersion cooling for 18650 lithium-ion battery pack under fast charging conditions[J]. Applied Thermal Engineering, 2023, 227: 120287. DOI: 10.1016/j.applthermaleng.2023.120287. |
[4] | LIU Y H, ALDAN G, HUANG X Y, et al. Single-phase static immersion cooling for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2023, 233: 121184. DOI: 10.1016/j.applthermaleng.2023.121184. |
[5] | 王国阳, 赵路遥, 孔庆红, 等. 基于浸没冷却的锂离子电池热管理性能研究[J]. 电源技术, 2022, 46(4): 408-411. |
WANG G Y, ZHAO L Y, KONG Q H, et al. Research on thermal management performance of Li-ion battery based on immersion cooling[J]. Chinese Journal of Power Sources, 2022, 46(4): 408-411. | |
[6] | CHIU K C, LIN C H, YEH S F, et al. Cycle life analysis of series connected lithium-ion batteries with temperature difference[J]. Journal of Power Sources, 2014, 263: 75-84. DOI: 10.1016/j.jpowsour.2014.04.034. |
[7] | 辛甜, 高啸天, 肖楷, 等. 使用工况对锂离子电池电化学性能的影响[J]. 南方能源建设, 2024, 11(2): 139-145. DOI: 10.16516/j.ceec. 2024.2.13. |
XIN T, GAO X T, XIAO K, et al. Influence of service conditions on electrochemical performance of lithium-ion batteries[J]. Southern Energy Construction, 2024, 11(2): 139-145. DOI: 10.16516/j.ceec. 2024.2.13. | |
[8] | MATSUDA T, ANDO K, MYOJIN M, et al. Investigation of the influence of temperature on the degradation mechanism of commercial nickel manganese cobalt oxide-type lithium-ion cells during long-term cycle tests[J]. Journal of Energy Storage, 2019, 21: 665-671. DOI: 10.1016/j.est.2019.01.009. |
[9] | 曾少鸿, 吴伟雄, 刘吉臻, 等. 锂离子电池浸没式冷却技术研究综述[J]. 储能科学与技术, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. |
ZENG S H, WU W X, LIU J Z, et al. A review of research on immersion cooling technology for lithium-ion batteries[J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. DOI: 10.19799/j.cnki.2095-4239.2023.0269. | |
[10] | 索克兰, 程林, 许鹤麟, 等. 提升电池储能系统经济性研究方法综述[J]. 全球能源互联网, 2023, 6(2): 163-178. DOI: 10.19705/j.cnki.issn2096-5125.2023.02.007. |
SUO K L, CHENG L, XU H L, et al. A review of research methods for improving the economy of battery energy storage system[J]. Journal of Global Energy Interconnection, 2023, 6(2): 163-178. DOI: 10.19705/j.cnki.issn2096-5125.2023.02.007. | |
[11] | YANG C R, LIU Q, LIU M Y, et al. Investigation of the immersion cooling system for 280 Ah LiFePO4 batteries: Effects of flow layouts and fluid types[J]. Case Studies in Thermal Engineering, 2024, 61: 104922. DOI: 10.1016/j.csite.2024.104922. |
[12] | 彭畅, 刘静远, 屈美玲, 等. 大规模储能电站热仿真模型构建[J]. 电力与能源进展, 2024, 12(1): 8-14. DOI: 10.12677/aepe.2024.121002. |
PENG C, LIU J Y, QU M L, et al. Construction of thermal simulation model of large-scale energy storage power station[J]. Advances in Energy and Power Engineering, 2024, 12(1): 8-14. DOI: 10.12677/aepe.2024.121002. | |
[13] | 田慧峰, 曹伟武. 反射隔热涂料热工计算方法研究[J]. 建筑节能, 2010, 38(10): 55-57. DOI: 10.3969/j.issn.1673-7237.2010.10.016. |
TIAN H F, CAO W W. Thermal calculation method of reflecting heat insulating coatings[J]. Building Energy Efficiency, 2010, 38(10): 55-57. DOI: 10.3969/j.issn.1673-7237.2010.10.016. | |
[14] | 北极星储能网. 价格创新低!储能系统0.638元/Wh、锂电池139美元/kWh, 还要继续跌![EB/OL]. (2023-11-30) [2025-05-01]. https://news.bjx.com.cn/html/20231130/1346856.shtml. |
[15] | 艾邦储能网. 2023储能盘点: 储能系统和EPC价格全景分析[EB/OL]. (2024-01-18) [2025-05-01]. https://www.aibanges.com/a/9651. |
[16] | 中国储能网. 2月储能系统破0.6元/Wh大关, 4 h储能系统成为主力军[EB/OL]. (2024-03-04) [2024-05-01]. https://www.escn.com.cn/20240304/4ab5891ee14a4cb5a10e4edc256fa18b/c.html. |
[17] | 何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析[J]. 电工电能新技术, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045. |
HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045. | |
[18] | 薛颖慧. K电化学储能电站运营经济性分析及优化策略[D]. 北京: 华北电力大学, 2023. DOI: 10.27140/d.cnki.ghbbu.2023.000466. |
XUE Y H. Economic analysis and optimization strategy of K electrochemical energy storage power station operation[D]. Beijing: North China Electric Power University, 2023. DOI: 10.27140/d.cnki.ghbbu.2023.000466. | |
[19] | 北极星储能网. 储能电池热管理系统液冷和风冷优劣势分析及应用场景探讨[EB/OL]. (2022-05-05) [2025-04-19]. https://news.bjx.com.cn/html/20220505/1222519.shtml. |
[20] | Goldman Sachs. Batteries: The Greenflation Challenge Ⅱ: Raising battery price forecasts; addressing six key investor debates [R/OL]. (2022-06-22) [2025-03-17]. https://www.goldmansachs.com/insights/goldman-sachs-research/batteries-the-greenflation-challenge-2. |
[21] | Goldman Sachs. Battery Metals Watch: The End of the Beginning[R/OL]. (2022-06-01) [2025-03-17]. https://www.goldmansachs.com/insights/goldman-sachs-research/battery-metals-watch-the-end-of-the-beginning. |
[22] | 赵光金, 李博文, 胡玉霞, 等. 退役动力电池梯次利用技术及工程应用概述[J]. 储能科学与技术, 2023, 12(7): 2319-2332. DOI: 10. 19799/j.cnki.2095-4239.2023.0288. |
ZHAO G J, LI B W, HU Y X, et al. Overview of the echelon utilization technology and engineering application of retired power batteries[J]. Energy Storage Science and Technology, 2023, 12(7): 2319-2332. DOI: 10.19799/j.cnki.2095-4239.2023. 0288. |
[1] | Wenrui WANG, Jiahao HAO, Pingyang Zheng, Yunkai YUE, Junling YANG, Zhentao ZHANG. Design and thermoeconomic assessments of CO2 Carnot battery employing sensible heat storage at high temperatures [J]. Energy Storage Science and Technology, 2025, 14(7): 2714-2728. |
[2] | Wenqiang FAN, Zinan SHI, Daiming YANG, Huishi LIANG, Ye CHEN. Experimental study on the suppression effect of different coolants on battery thermal runaway [J]. Energy Storage Science and Technology, 2025, 14(4): 1554-1563. |
[3] | Yuehao CHEN, Sha CHEN, Huilan CHEN, Xiaoqin SUN, Yongqiang LUO. Simulation study on cooling performance of immersion liquid cooling systems for energy-storage battery packs [J]. Energy Storage Science and Technology, 2025, 14(2): 648-658. |
[4] | Lei WANG, Ruitao YAN, Fan ZHANG, Na YAN, Fen YUE, Xu FU, Mengchen LIU, Yunzhang YANG. Economic analysis of independent energy-storage project participation based on the optimization model of in-spot power market and primary frequency regulation markets [J]. Energy Storage Science and Technology, 2025, 14(2): 834-845. |
[5] | Qingshan WANG, Yan LI, Qun ZHANG, Decheng WANG. A comparative analysis for various scaled mechanical energy storage technologies applied to power systems with a high share of renewable energy sources [J]. Energy Storage Science and Technology, 2025, 14(2): 854-867. |
[6] | Qili LIN, Zhen CHEN, Xiaohu WANG, Hongxun QI, Wei WANG. Economic analysis of large-scale hydrogen energy storage based on the “electric-hydrogen-electric” process [J]. Energy Storage Science and Technology, 2024, 13(6): 2068-2077. |
[7] | Liugan ZHANG, Yingchi ZHOU, Wenbing SUN, Kai YE, Longxiang CHEN. Performance of precooled CAES system using ORC-VCR to recover compression heat [J]. Energy Storage Science and Technology, 2024, 13(2): 611-622. |
[8] | Wen DU, Junlei WANG, Yunfei XU, Shilong LI, Kun WANG. Techno-economic analysis for the preparation of Li-ion battery's ternary cathode material using flame spray pyrolysis [J]. Energy Storage Science and Technology, 2024, 13(1): 345-357. |
[9] | Shaohong ZENG, Weixiong WU, Jizhen LIU, Shuangfeng WANG, Shifeng YE, Zhenyu FENG. A review of research on immersion cooling technology for lithium-ion batteries [J]. Energy Storage Science and Technology, 2023, 12(9): 2888-2903. |
[10] | Weiling ZHANG, Han GU, Chao ZHANG, Ang GE, Yuanxu YING. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy Storage Science and Technology, 2023, 12(4): 1295-1301. |
[11] | Fuchao LI, Mingbiao CHEN, Qun DU, Yongzhen CHEN, Wenji SONG, Wenye LIN, Ziping FENG. Research on in-situ remote offshore wind-power consumption based on ice-slurry cold storage [J]. Energy Storage Science and Technology, 2023, 12(12): 3730-3739. |
[12] | Jingqiang ZHANG, Haimin WANG, Nan LU. Temperature field characteristics of a small NCM811 traction battery module cooled by insulating oil immersion [J]. Energy Storage Science and Technology, 2022, 11(8): 2612-2619. |
[13] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[14] | Kai DING, Jian ZHENG, Wei LI, Zengrui HUANG, Yi WANG, Yimin QIAN, Zixuan ZHENG, Qi XIE. Hierarchical voltage sag mitigation scheme based on user-side energy storage systems and its economic analysis [J]. Energy Storage Science and Technology, 2022, 11(10): 3381-3390. |
[15] | Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization [J]. Energy Storage Science and Technology, 2022, 11(1): 19-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||