Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 745-753.doi: 10.12028/j.issn.2095-4239.2016.0035
Previous Articles Next Articles
Wu Jianfang, Guo Xin
Received:
2016-07-01
Revised:
2016-07-27
Online:
2016-09-01
Published:
2016-09-01
Wu Jianfang, Guo Xin. Point defects in solid-state lithium ion conducting oxides[J]. Energy Storage Science and Technology, 2016, 5(5): 745-753.
[1] YOSHINO A. The birth of the lithium-ion battery[J]. Angew. Chem. Int. Edit.,2012,51(24):5798-5800. [2] TARASCON J M,ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature,2001,414:359-367. [3] GOODENOUGH J B,KIM Y. Challenges for rechargeable Li batteries[J]. Chem. Mater.,2010,22(3):587-603. [4] THANGADURAI V,WEPPNER W. Li6ALa2Ta2O12 (A=Sr, Ba):Novel garnet-like oxides for fast lithium ion conduction[J]. Adv. Funct. Mater.,2005,15(1):107-112. [5] MURUGAN R,THANGADURAI V,WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem. Int. Edit.,2007,46(41):7778-7781. [6] GEIGER C A,ALEKSEEV E,LAZIC B,et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet:A fast lithium-ion conductor[J]. Inorg. Chem.,2011,50(3):1089-1097. [7] ZHANG Q,SCHMIDT N,LAN J,et al. A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte[J]. Chem. Commun.,2014,50(42):5593-5596. [8] INAGUMA Y,CHEN L,ITOH,et al. High ionic conductivity in lithium lanthanum titanate[J]. Solid State Commun.,1993,86(10):689-693. [9] STRAMARE S,THANGADURAI V,WEPPNER W. Lithium lanthanum titanates:A review [J]. Chem. Mater.,2003,15(21):3974-3990. [10] KNAUTH P. Inorganic solid Li ion conductors:An overview [J]. Solid State Ionics,2009,180(14/15/16):911-916. [11] TAKADA K. Progress and prospective of solid-state lithium batteries[J]. Acta Mater.,2013,61(3):759-770. [12] GOODENOUGH J B,HONG H Y P,KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater. Res. Bull.,1976,11(2):203-220. [13] ALPEN U V,RABENAU A,TALAT G H. Ionic conductivity in Li3N single crystals [J]. Appl. Phys. Lett.,1977,30(12):621-623. [14] DISSANAYAKE M A K L,WEST A R. Structure and conductivity of an Li4SiO4-Li2SO4 solid solution phase[J]. J. Mater. Chem.,1991,1(6):1023-1025. [15] THANGADURAI V,KAACK H,WEPPNER W J F. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta)[J]. J. Am. Ceram. Soc.,2003,86(3):437-440. [16] KAMAYA N,HOMMA K,YAMAKAWA Y,et al. A lithium superionic conductor[J]. Nat. Mater.,2011,10(9):682-686. [17] SHIRAKI S,OKI H,TAKAGI Y,et al. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films[J]. J. Power Sources,2014,267:881-887. [18] OHTA S,SEKI J,YAGI Y,et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery [J]. J. Power Sources,2014,265:40-44. [19] KAWAI H,KUWANO J. Lithium ion conductivity of a-site deficient perovskite solid solution La0.67-xLi3xTiO3[J]. J. Electrochem. Soc.,1994,141(7):L78-L79. [20] TERANISHI T,KOUCHI A,HAYASHI H,et al. Dependence of the conductivity of polycrystalline Li0.33BaxLa0.56–2/3xTiO3 on Ba loading[J]. Solid State Ionics,2014,263(1):33-38. [21] MA C,CHEN K,LIANG C,et al. Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes[J]. Energy Environ. Sci.,2014,7(5):1638-1642. [22] KINGERY W D. Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena:II, Solute segregation, grain-boundary diffusion, and general discussion[J]. J. Am. Ceram. Soc.,1974,57(2):74-83. [23] FRENKEL J. Kinetic theory of liquids[M]. New York:Oxford University Press,1946. [24] AWAKA J,TAKASHIMA A,KATAOKA K,et al. Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12[J]. Chemistry Letters,2011,40(1):60-62. [25] ZEIER W G,ZHOU S,LOPEZBERMUDEZ B,et al. Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12[J]. ACS Appl. Mater. Interfaces,2014,6(14):10900-10907. [26] DU F,ZHAO N,LI Y,et al. All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes[J]. J. Power Sources,2015,300:24-28. [27] LI Y,WANG Z,CAO Y,et al. W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries[J]. Electrochimica Acta,2015,180(20):37-42. [28] WANG D,ZHONG G,PANG W K,et al. Towards understanding the lithium transport mechanism in garnet-type solid electrolytes:Li+ ions exchanges and their mobility at octahedral/tetrahedral sites[J]. Chem. Mater.,2015,27(19):6650-6659. [29] TONG X,THANGADURAI V,WACHSMAN E D. Highly conductive Li garnets by a multielement doping strategy[J]. Inorg. Chem.,2015,54(7):3600-3607. [30] JANANI N,RAMAKUMAR S,KANNAN S,et al. Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12[J]. J. Am. Ceram. Soc.,2015,98(7):2039-2046. [31] DAVID I N,THOMPSON T,WOLFENSTINE J,et al. Microstructure and Li-ion conductivity of hot-pressed cubic Li7La3Zr2O12[J]. J. Am. Ceram. Soc.,2015,98(4):1209-1214. [32] WANG D,ZHONG G,DOLOTKO O,et al. The synergistic effects of Al and Te on the structure and Li+-mobility of the garnet-type solid electrolytes[J]. J. Mater. Chem. A,2014,2(47):20271-20279. [33] RANGASAMY E,SAHU G,KEUM J K,et al. A high conductivity oxide-sulfide composite lithium superionic conductor[J]. J. Mater. Chem. A,2014,2(12):4111-4116. [34] REN Y,DENG H,CHEN R,et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. J. Eur. Ceram. Soc.,2015,35(2):561-572. [35] RAMAKUMAR S,JANANI N,MURUGAN R. Influence of lithium concentration on the structure and Li+ transport properties of cubic phase lithium garnets[J]. Dalton Trans.,2014,44(2):539-552. [36] LI Y,WANG Z,LI C,et al. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. J. Power Sources,2014,248:642-646. [37] JANANI N,DEVIANNAPOORANI C,DHIVYA L,et al. Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet[J]. RSC Adv.,2014,4(93):51228-51238. [38] HUANG M,SHOJI M,SHEN Y,et al. Preparation and electrochemical properties of Zr-site substituted Li7La3(Zr2−xMx)O12 (M=Ta, Nb) solid electrolytes[J]. J. Power Sources,2014,261:206-211. [39] DHIVYA L,MURUGAN R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Appl. Mater. Interfaces,2014,6(20):17606-17615. [40] BERNUY C,MANALASTAS W,LOPEZ J M,et al. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics[J]. Chem. Mater.,2014,26(12):3610-3617. [41] BAEK S W,LEE J M,KIM T Y,et al. Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries[J]. J. Power Sources,2014,249:197-206. [42] TADANAGA K,TAKANO R,ICHINOSE T,et al. Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites[J]. Electrochem. Commun.,2013,33:51-54. [43] SAKAMOTO J,RANGASAMY E,KIM H,et al. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12[J]. Nanotechnology,2013,24(42):3532-3540. [44] RASKOVALOV A A,IL'INA E A,ANTONOV B D. Structure and transport properties of Li7La3Zr2-0.75xAlxO12 superionic solid electrolytes[J]. J. Power Sources,2013,238:48-52. [45] RANGASAMY E,WOLFENSTINE J,ALLEN J,et al. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7−xLa3−xAxZr2O12 garnet-based ceramic electrolyte[J]. J. Power Sources,2013,230:261-266. [46] SHINAWI H E,JANEK J. Stabilization of cubic lithium-stuffed garnets of the type “Li7La3Zr2O12” by addition of gallium[J]. J. Power Sources,2013,225:13-19. [47] DEVIANNAPOORANI C,DHIVYA L,RAMAKUMAR S,et al. Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. J. Power Sources,2013,240:18-25. [48] WOLFENSTINE J,RATCHFORD J,RANGASAMY E,et al. Synthesis and high Li-ion conductivity of Ga-stabilized cubic Li7La3Zr2O12[J]. Mater. Chem. Phys.,2012,134(2/3):571-575. [49] WANG Y,LAI W. High ionic conductivity lithium garnet oxides of Li7−xLa3Zr2−xTaxO12 compositions[J]. Electrochemical and Solid-State Letter,2012,15(5):A68-A71. [50] LI Y,HAN J T,WANG C A,et al. Optimizing Li+ conductivity in a garnet framework[J]. J. Mater. Chem.,2012,22(30):15357-15361. [51] HUANG M,DUMON A,NAN C W. Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12[J]. Electrochem. Commun.,2012,21:62-64. [52] GUPTA A,MURUGAN R,PARANTHAMAN M P,et al. Optimum lithium-ion conductivity in cubic Li7−xLa3Hf2−xTaxO12[J]. J. Power Sources,2012,209:184-188. [53] ALLEN J L,WOLFENSTINE J,RANGASAMY E,et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12[J]. J. Power Sources,2012,206:315-319. [54] OHTA S,KOBAYASHI T,ASAOKA T. High lithium ionic conductivity in the garnet-type oxide Li7-XLa3(Zr2-X, NbX)O12 (X=0-2)[J]. J. Power Sources,2011,196:3342-3345. [55] MURUGAN R,RAMAKUMAR S,JANANI N. High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet[J]. Electrochem. Commun.,2011,13(12):1373-1375. [56] LI Y,WANG C A,XIE H,et al. High lithium ion conduction in garnet-type Li6La3ZrTaO12[J]. Electrochem. Commun.,2011,13(12):1289-1292. [57] KUMAZAKI S,IRIYAMA Y,KIM K H,et al. High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si[J]. Electrochem. Commun.,2011,13(5):509-512. [58] JIN Y,MCGINN P J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method[J]. J. Power Sources,2011,196:8683-8687. [59] WOLFENSTINE J,SAKAMOTO J,ALLEN J L. Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12[J]. J. Mater. Sci.,2012,47(10):4428-4431. [60] TENHAEFF W E,RANGASAMY E,WANG Y,et al. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem,2014,1(2):375-378. [61] GUO X. Peculiar size effect in nanocrystalline BaTiO3[J]. Acta Mater.,2013,61(5):1748-1756. [62] GUO X,ZHANG Z. Grain size dependent grain boundary defect structure:Case of doped zirconia[J]. Acta Mater.,2003,51(9):2539-2547. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[3] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[4] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[5] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[6] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[7] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[8] | Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 77-86. |
[9] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[10] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[11] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[12] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[13] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[14] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[15] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||