Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (2): 248-259.doi: 10.12028/j.issn.2095-4239.2018.0220
Previous Articles Next Articles
LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming
Received:
2018-11-05
Revised:
2018-12-25
Online:
2019-03-01
Published:
2019-03-01
CLC Number:
LI Wei, HOU Zhaoxia, LI Jianjun, BO Daming. Preparation methods and progress of manganese dioxide/graphene based composites in supercapacitors[J]. Energy Storage Science and Technology, 2019, 8(2): 248-259.
[1] WANG K, WU H P, MENG Y N, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1):14-31. [2] LIU W W, LI X, ZHU M H, et al. High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel[J]. Journal of Power Sources, 2015, 282:179-186. [3] WANG Q H, JIAO L F, DU H M, et al. Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors[J]. Journal of Power Sources, 2014, 245:101-106. [4] MA W J, CHEN S H, YANG S Y, et al. Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors[J]. Journal of Power Sources, 2016, 306:481-488. [5] ZHANG Y B, DING M J, SONG C J, et al. Selective catalytic reduction of NO with NH3 over MnO2/PDOPA@CNT catalysts prepared by poly(dopamine) functionalization[J]. New Journal of Chemistry, 2018, 42(14):11273-11275. [6] LI X, DONG F, XU N, et al. Co3O4/MnO2/hierarchically porous carbon as superior bifunctional electrodes for liquid and all-solid-state rechargeable zinc-air batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(18):15591-15601. [7] YAO B, ZHANG J, KOU T Y, et al. Paper-based electrodes for flexible energy storage devices[J]. Advanced Science, 2017, 4(7):doi:10.1002/advs.201700107. [8] HUI N, CHAI F L, LIN P P, et al. Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors[J]. Electrochim. Acta, 2016, 199:234-241. [9] GARAKANI M A, ABOUALI S, CUI J, et al. In-situ TEM study of lithiation into PPy coated α-MnO2/graphene foam freestanding electrode[J]. Materials Chemistry Frontiers, 2018, 2(8):1481-1488. [10] IGUCHI H, MIYAHARA K, HIGASHI C, et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite[J]. FlatChem, 2018, 8:31-39. [11] BAG S, RETNA RAJ C. Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors[J]. Mater. Chem., 2016, 4(2):587-595. [12] WANG K, YANG J, ZHU J, et al. General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(22):11236-11245. [13] RAMESH S, KARUPPASAMY K, MSOLLI S, et al. Nanocrystalline structured of NiO/MnO2@nitrogen-doped graphene oxide hybrid nanocomposite for high performance supercapacitor[J]. New Journal of Chemistry, 2017, 41(24):15517-15527. [14] ZHANG Q Z, ZHANG D, MIAO Z C, et al. Research progress in MnO2-carbon based supercapacitor electrode materials[J]. Small, 2018, 14(24):doi:10.1002/smll.201702883. [15] SUN S Q, JIANG G H, LIU Y K, et al. Facile preparation of hybrid films based on MnO2 and reduced graphene oxide for a flexible supercapacitor[J]. Journal of Electronic Materials, 2018, 47(10):5993-5999. [16] GAO G, ZHANG Q, CHENG X B, et al. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method[J]. Journal of Alloys & Compounds, 2015, 649:82-88. [17] SUN H B, GU H Z, CHEN Y. Preparation and electrochemical properties of graphene/MnO2 nanocomposites for supercapacitors[J]. Key Engineering Materials, 2018, 768:102-108. [18] ZHANG L F, DU S Q, LIU Y, et al. Manganese dioxide nanoflakes anchored on reduced graphene oxide with superior electrochemical performance for supercapacitorss[J]. IET Micro & Nano Letters, 2017, 12(3):147-150. [19] MENG X Y, LU L, SUN C W. Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors[J]. Mater. Interfaces, 2018, 10(19):16474-16481. [20] ZHAO X, WANG H, ZHAI G, et al. Facile assembly of 3D porous reduced graphene oxide/ultrathin MnO2 nanosheets-S aerogels as efficient polysulfide adsorption sites for high-performance lithium-sulfur batteries[J]. Chemistry, 2017, 23(29):7037-7045. [21] XU J, CHEN Y, DONG Z, et al. Facile synthesis of the Ti3+-TiO2-RGO compound with controllable visible light photocatalytic performance:GO regulating lattice defects[J]. Journal of Materials Science, 2018, 53(18):12770-12780. [22] LIU C L, GUI D Y, LIU J H. Process dependent graphene-wrapped plate-like MnO2 nanospheres for high performance supercapacitor[J]. Chemical Physics Letters, 2014, 614:123-128. [23] ZHAO X, TANG J, YU F, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition[J]. Journal of Alloys and Compounds, 2018, 766(25):266-273. [24] XIONG C Y, LI T H, ZHAO T K, et al. Three-dimensional graphene/MnO2 nanowalls hybrid for high-efficiency electrochemical supercapacitors[J]. NANO, 2018, 13(1):doi:10.1142/s1793292018500133. [25] ZHOU J H, CHEN N N, GE Y, et al. Flexible all-solid-state micro-supercapacitor based on Ni fiber electrode coated with MnO2 and reduced graphene oxide via electrochemical deposition[J]. Science China Materials, 2018, 6(12):243-253. [26] FALCAO E H L, BLAIR R G, MACK J J, et al. Microwave exfoliation of a graphite intercalation compound[J]. Carbon, 2007, 45(6):1367-1369. [27] VIMUNA V M, ATHIRA A R, XAVIER T S, et al. Microwave assisted synthesis of graphene oxide-MnO2 nanocomposites for electrochemical supercapacitors[J]. AIP Conference Proceedings, 2018, 1953(1):doi:10.1063/1.5032471. [28] YAN J, FAN Z J, WEI T, et al. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon, 2010, 48(13):3825-3833. [29] LIU R R, WEN D D, ZHANG X Y, et al. Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes[J]. Materials Research Express, 2018, 5(6):doi:10.1088/2053-1591/aac7b4. [30] QIU X, XU D Y, MA L, et al. Preparation of manganese oxide/graphene aerogel and its application as an advanced supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2017, 12:2173-2183. [31] ZHAO Y F, RAN W, HE J, et al. High-performance asymmetric supercapacitor based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability[J]. Small, 2014, 11(11):1310-1319. [32] MA W J, CHEN S H, YANG S Y, et al. Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density[J]. Carbon, 2017, 113:151-158. [33] SHENG L Z, JIANG L L, WEI T, et al. Fe(CN)63- ion-modified MnO2/graphene nanoribbons enabling high energy density asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(17):7649-7658. [34] RAKHI R B, ALHEBSHI N A, ANJUM D H, et al. Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(38):16190-16198. [35] LI J, CHEN Y, WU Q, et al. Synthesis and electrochemical properties of Fe3O4/MnO2/RGOs sandwich-like nano-superstructures[J]. Journal of Alloys & Compounds, 2017, 693:373-380. [36] OJHA G P, PANT B, PARK S J, et al. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications[J]. Journal of Colloid & Interface Science, 2017, 494:338-344. [37] WANG K, LI L W, XUE W, et al. Electrodeposition synthesis of PANI/MnO2/graphene composite materials and its electrochemical performance[J]. International Journal of Electrochemical Science, 2017, 12(9):8306-8314. [38] JI J Y, ZHANG X Y, HUANG Z L, et al. One-step synthesis of graphene oxide/polypyrrole/MnO2 ternary nanocomposites with an improved electrochemical capacitance[J]. Journal of Nanoscience & Nanotechnology, 2017, 17(6):4356-4361. [39] 刘文杰, 孙现众, 郝青丽. 电化学沉积制备MnO2/PEDOT:PSS复合材料及其电容特性研究[J]. 储能科学与技术, 2018, 7(2):262-269. LIU W J, SUN X Z, HAO Q L. Electrochemical deposition of MnO2/PEDOT:PSS composite and its capacitance characteristics[J]. Energy Storage Science and Technology, 2018, 7(2):262-269. [40] HAREESH K, SHATEESH B, JOSHI R P, et al. Ultra high stable supercapacitance performance of conducting polymer coated MnO2 nanorods/RGO nanocomposites[J]. RSC Advances, 2017, 7(32):20027-20036. [41] WU T, WANG C N, MO Y, et al. A ternary composite with manganese dioxide nanorods and graphene nanoribbons embedded in a polyaniline matrix for high-performance supercapacitors[J]. RSC Advances, 2017, 7(53):33591-33599. |
[1] | Liang ZHANG, Xiong ZHOU, Jiukang TENG, Wenjing YANG, Xueming LI. Electrochemical properties of fluorinated Keqin black/graphene composite materials [J]. Energy Storage Science and Technology, 2025, 14(5): 1841-1849. |
[2] | Liping ZHOU, Deqing ZHOU, Fenghua ZHENG, Qichang PAN, Sijiang HU, Yongjie JIANG, Hongqiang WANG, Qingyu LI. Preparation and application of Si@void@C composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1115-1122. |
[3] | Xinyu ZHANG, Shenghao LUO, Yingxin WU, Zhenying LIU, Lizhi ZHANG, Ziye LING. Research progress of composite phase change materials for thermal management and thermal runaway protection of lithium-ion batteries [J]. Energy Storage Science and Technology, 2025, 14(3): 1040-1053. |
[4] | Yan CHEN, Ziqi LI, Nanhao CHEN, Yichi ZHANG, Xiaohong WU, Dazhu CHEN. Advances in polymeric solid-solid phase change materials based on polyethylene glycol [J]. Energy Storage Science and Technology, 2025, 14(1): 124-139. |
[5] | Renchao FENG, Yu DONG, Xinyu ZHU, Cai LIU, Sheng CHEN, Da LI, Ruoyu GUO, Bin WANG, Jionghui WANG, Ning LI, Yuefeng SU, Feng WU. Research progress on graphite oxide-based anodes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2024, 13(6): 1835-1848. |
[6] | Xin LIU, Xiling MAO, Xinyu YAN, Junqiang WANG, Mengwei LI. Preparation and electrochemical properties of NiMn-MOF with 3D pore network electrode materials [J]. Energy Storage Science and Technology, 2024, 13(2): 361-369. |
[7] | Fei HAO, Junming WANG, Chunwei DONG, Linlin WEI, Yang DONG, Zhijiang SU, Wenbing LIANG. Preparation and research of three-dimensional silicon carbon anodes with a hollow structure [J]. Energy Storage Science and Technology, 2024, 13(1): 325-332. |
[8] | Yue LI, Bo WANG, Nan WU. Preparation and lithium storage performance of graphene/Si/SiO x nanocomposites [J]. Energy Storage Science and Technology, 2023, 12(9): 2752-2759. |
[9] | Wanwei JIANG, Chengjing LIANG, Li QIAN, Meicheng LIU, Mengxiang ZHU, Jun MA. Regulating tin-based three-dimensional graphene foam and its performance as a lithium-ion battery anode [J]. Energy Storage Science and Technology, 2023, 12(9): 2746-2751. |
[10] | Zhun FENG. Ultra-flexible halloysite/polyaniline composite electrode based on graphene electrode [J]. Energy Storage Science and Technology, 2023, 12(6): 1794-1803. |
[11] | Chao TAN, Chao WANG. Study on the performance of functionalized graphene oxide as positive sulfur carrier for lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2023, 12(4): 1025-1033. |
[12] | Panlei CAO, Linxiu SUI, Jingyun FENG, Weifu ZHANG, Chengcheng LUO, Xiaoya YUAN. Fe3+ crosslinking reduced graphene oxides free-standing film by pre-encapsulated Fe3O4 nanospheres for lithium storage [J]. Energy Storage Science and Technology, 2023, 12(3): 710-720. |
[13] | Xi TIAN, Yaxuan XIONG, Jing REN, Yanqi ZHAO, Shihao JIN, Shuo LI, Yang YANG, Yulong DING. Effect of carbon sequestration on the performance of waste concrete shape-stable phase change composites [J]. Energy Storage Science and Technology, 2023, 12(12): 3709-3719. |
[14] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[15] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||