Most Down Articles

    Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

    In last 3 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research progress of energy storage technology in China in 2021
    Haisheng CHEN, Hong LI, Wentao MA, Yujie XU, Zhifeng WANG, Man CHEN, Dongxu HU, Xianfeng LI, Xisheng TANG, Yongsheng HU, Yanwei MA, Kai JIANG, Hao QIAN, Qingsong WANG, Liang WANG, Xinjing ZHANG, Xing WANG, Dehou XU, Xuezhi ZHOU, Wei LIU, Xianzhang WU, Donglin WANG, Qinggang HE, Zifeng MA, Yaxiang LU, Xuesong ZHANG, Quan LI, Liumin SUO, Huan GUO, Zhenhua YU, Wenxin MEI, Peng QIN
    Energy Storage Science and Technology    2022, 11 (3): 1052-1076.   DOI: 10.19799/j.cnki.2095-4239.2022.0105
    Abstract2400)   HTML429)    PDF(pc) (1662KB)(4438)       Save

    Research and development progress on energy storage technologies of China in 2021 is reviewed in this paper. By reviewing and analyzing three aspects of research and development including fundamental study, technical research, integration and demonstration, the progress on major energy storage technologies is summarized including hydro pumped energy storage, compressed air energy storage, flywheel, lead battery, lithium-ion battery, flow battery, sodium-ion battery, supercapacitor, new technologies, integration technology, fire-control and safety technology. The results indicate that extensive improvements of China's energy storage technologies have been achieved during 2021 in terms of all the three aspects. China is now the most active country in energy storage fundamental study and also one of the core countries of technical research and demonstration.

    Table and Figures | Reference | Related Articles | Metrics
    Technology feasibility and economic analysis of Na-ion battery energy storage
    ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng
    Energy Storage Science and Technology    2022, 11 (6): 1892-1901.   DOI: 10.19799/j.cnki.2095-4239.2022.0066
    Abstract2122)   HTML293)    PDF(pc) (3612KB)(2243)       Save

    Energy-storage technology is a critical technology for the construction of energy Internet, which is important for ensuring stable operation of power grids, optimizing energy transmission, absorbing clean energy, and improving power quality. Electrochemical energy-storage technology, which enjoys the advantages of small geographic-location restrictions and short construction period, is one of the mainstream energy-storage technologies. Currently, the most mature electrochemical energy-storage technology is lithium-ion battery. However, the shortage in lithium resources can alone limit the popularization of electric vehicles and large-scale energy-storage applications. Sodium-ion batteries have become the current research focus in energy-storage technology owing to rich sodium resources, low cost, high-energy conversion efficiency, long cycle life, low maintenance costs, and other advantages. This study analyzes the technical feasibility and technical economy of Na-ion battery energy-storage technology and compares it with the current mainstream energy-storage technologies. The advantages of Na-ion battery in the field of large-scale energy storage are analyzed in terms of the cost per kiloWatt-hour. A demonstration of a 1 MW·h Na-ion battery energy-storage system is also briefly introduced. Meanwhile, some views and suggestions on the application of Na-ion battery in energy-storage power stations are provided.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress of flow battery technologies
    Zhizhang YUAN, Zonghao LIU, Xianfeng LI
    Energy Storage Science and Technology    2022, 11 (9): 2944-2958.   DOI: 10.19799/j.cnki.2095-4239.2022.0295
    Abstract1367)   HTML178)    PDF(pc) (6518KB)(1834)       Save

    Energy storage technology is the key to constructing new power systems and achieving "carbon neutrality." Flow batteries are ideal for energy storage due to their high safety, high reliability, long cycle life, and environmental safety. In this review article, we discuss the research progress in flow battery technologies, including traditional (e.g., iron-chromium, vanadium, and zinc-bromine flow batteries) and recent flow battery systems (e.g., bromine-based, quinone-based, phenazine-based, TEMPO-based, and methyl viologen [MV]?-based flow batteries). Furthermore, we systematically review these flow batteries according to their development and maturity and discuss their traits, challenges, and prospects. The bottlenecks for different types of flow battery technologies are also selectively analyzed. The future advancement and research directions of flow battery technologies are summarized by considering the practical requirements and development trends in flow battery technologies.

    Table and Figures | Reference | Related Articles | Metrics
    Preparation and characterization of solvent-free dry electrodes for lithium ion batteries
    Dechao GUO, Yimin GUO, Qiwen ZHANG, Xiangyun CI, Fengrong HE
    Energy Storage Science and Technology    2021, 10 (4): 1311-1316.   DOI: 10.19799/j.cnki.2095-4239.2021.0081
    Abstract2252)   HTML224)    PDF(pc) (8135KB)(1738)       Save

    LiNi0.8Co0.1Mn0.1O2 dry electrodes for lithium-ion batteries were prepared using a solvent-free electrode preparation technology. The morphology and elemental distribution of the dry electrodes were analyzed using a scanning electron microscope and an X-ray energy spectrometer (EDS). The electrochemical performance of LiNi0.8Co0.1Mn0.1O2 dry electrodes were characterized by the rate of charge/discharge, electrochemical impedance spectroscopy, and cycle charge/discharge. The results show that in the dry electrodes, PTFE fibers are widely distributed around the LiNi0.8Co0.1Mn0.1O2 particles, which form a dense, complete, and flexible net-like binding structure. Batteries containing the dry electrodes delivered an excellent capacity retention of 94.89% for more than 500 cycles, which is much greater than that of traditional wet-coated electrodes. Inside the dry electrodes after 500 cycles, a stable net-like binding structure was maintained, and there were significantly less cracks on the surface of the LiNi0.8Co0.1Mn0.1O2 particles than on the wet-coated electrodes. These results indicate that the three-dimensional net-like binding structure formed by PTFE fibers can effectively improve the anti-deterioration performance of the electrodes. No solvents were used in the preparation of the dry electrodes, which can reduce the amount of raw materials and energy consumption, and thus be environmentally friendly. The solvent-free electrode preparation technology provides many practical applications in the preparation of thick electrodes to i ncrease the energy density of lithium-ion batteries.

    Table and Figures | Reference | Related Articles | Metrics
    High-nickel ternary layered cathode materials for lithium-ion batteriesResearch progresschallenges and improvement strategies
    Zhizhan LI, Jinlei QIN, Jianing LIANG, Zhengrong LI, Rui WANG, Deli WANG
    Energy Storage Science and Technology    2022, 11 (9): 2900-2920.   DOI: 10.19799/j.cnki.2095-4239.2021.0595
    Abstract1594)   HTML257)    PDF(pc) (22577KB)(1728)       Save

    With the gradual expansion of lithium-ion battery applications in the field of new energy vehicles, endurance mileage has become a key factor restricting the development of new energy vehicles. Improving the energy density of lithium-ion batteries is an effective way to solve range anxiety. Owing to their high specific capacity, low cost, and relatively good safety, high-nickel ternary layered materials are now one of the most promising cathode candidates for the next high-specific energy lithium-ion batteries. However, increased nickel content significantly decreases ternary layered materials' cycling and thermal stability. In this regard, we first summarize the development process of cathode materials for lithium ion batteries and analyze the necessity of developing ternary layered materials for high nickel, after which the current challenges based on the research status of high nickel ternary layered cathode materials are systematically discussed. The failure mechanism of the material is comprehensively analyzed by considering cation mixing, structural degradation, microcracks, surface side reactions, and thermal stability. In addition, considering the problems of high nickel ternary layered materials, some effective and advanced improvement strategies, including surface coating, element doping, single-crystal structure, and concentration gradient design, are reviewed. The research progress of various improvement strategies and modification mechanisms is highlighted. Finally, we compare the characteristics of various improvement strategies. Based on the advantages of a single improvement strategy and the coupling effect of different improvement strategies, we look forward to the development direction of the improvement strategy for high nickel ternary layered materials and propose feasibility programs for the collaborative application of multiple improvement strategies.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress on recycling technology of waste lithium iron phosphate power battery
    ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong
    Energy Storage Science and Technology    2022, 11 (6): 1854-1864.   DOI: 10.19799/j.cnki.2095-4239.2022.0201
    Abstract1175)   HTML125)    PDF(pc) (4278KB)(1690)       Save

    This study combines the results of domestic and foreign research on the recycling of used lithium iron phosphate power batteries recently. Furthermore, it provides a detailed review of the latest technology for recycling used lithium iron phosphate power batteries, including pretreatment processes, positive and negative electrode materials, and electrolyte recycling methods. This study also focuses on the recovery process of positive electrode material, including the acid leaching process and bioleaching technology in pyrometallurgy and hydrometallurgy, and direct regeneration technology. It introduces the recycling technology of negative electrodes and the supercritical CO2 recovery process of electrolytes. The recent progress in the recovery and utilization of waste lithium iron phosphate power batteries is systematically summarized, and the existing problems in the recovery and utilization of waste lithium iron phosphate power batteries are analyzed. In the future, we will conduct in-depth research on the recycling process and its principle, develop a clean, environmental-friendly and simple recycling process, and adopt different recycling methods for different types of recycled materials. Thus, the high efficiency and high-quality recovery of all waste lithium iron phosphate power battery components can be realized.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress and prospect of key materials of proton exchange membrane water electrolysis
    Bin XU, Rui WANG, Wei SU, Guangli HE, Ping MIAO
    Energy Storage Science and Technology    2022, 11 (11): 3510-3520.   DOI: 10.19799/j.cnki.2095-4239.2022.0319
    Abstract1060)   HTML102)    PDF(pc) (4897KB)(1655)       Save

    Hydrogen is an essential element for a net carbon energy system that provides an alternative to difficult sectors for deep decarbonization, including heavy industry and long-haul transport. Electrolytic hydrogen synthesized through renewables is the most sustainable technology. It offers additional flexibility to integrate intermittent renewable energy and also can be used as seasonal energy storage. High current density, high operating pressure, small electrolyzer size, good integrity, and flexibility are all benefits of proton exchange membrane (PEM) water electrolysis technology. It also has good adaptability to the high volatility of wind and PV power. However, one of the main challenges is its high cost. The cost composition and application status of PEM water electrolysis are summarized in this study, and the research progress in critical materials, preparation technology, and component manufacturing are addressed in depth. According to research, novel structure-design preparation strategies and manufacturing technology are expected to improve electrolyzer design and construction, decrease the cost of raw materials and manufacturing for bipolar plates, decrease ohmic polarization by reducing membrane thickness, and increase the activity and utilization of noble-metal catalysts. Finally, the future R&D direction and target of PEM water electrolysis are proposed. With technology innovation in material performance, optimization of component manufacturing, and an increase in electrolyzer plant scale, significantly reducing the cost of PEM water electrolysis equipment and accelerating the large-scale development of PEM hydrogen production.

    Table and Figures | Reference | Related Articles | Metrics
    Analysis of the capacity fading mechanism in lithium iron phosphate power batteries cycled at ambient temperatures
    Xiaomei LIU, Bin YAO, Leqiong XIE, Qiao HU, Li WANG, Xiangming HE
    Energy Storage Science and Technology    2021, 10 (4): 1338-1343.   DOI: 10.19799/j.cnki.2095-4239.2021.0144
    Abstract1409)   HTML151)    PDF(pc) (2125KB)(1624)       Save

    Cycle life at ambient temperatures is an important indicator of power battery applications. With a stable cathode and a simple electrolyte, the analysis of the capacity fading mechanism in lithium iron phosphate (LFP) power batteries is of great significance for a comprehensive understanding of capacity fading in these power batteries and for improving electrochemical performance. This study discusses the capacity fading mechanism in ambient cycling based on commercial lithium iron phosphate power batteries at different states of health (SOH). Electrochemical differential capacity analysis is applied to batteries cycled at ambient temperature to determine the polarization alteration. The area charge of peaks on a differential capacity curve is used to analyze the source of the capacity loss. Capacity loss is mainly derived from the reaction of graphite on the third plateau, not from the result of polarization upon cycling. Charge transfer resistance of the anode is found to increase significantly in electrochemical impedance spectroscopy collected on tri-electrode cells. No evident capacity losses of positive and negative electrodes are observed on coin cells whose electrodes were collected from LFP batteries of different SOH, indicating no deterioration in cathode and anode materials. The investigation shows that the capacity fading at ambient temperature cycling is mainly caused by the active lithium loss from side reactions and kinetic fading of the anode. The kinetic fading of the anode is commonly exhibited during the cycles by the thickening of the SEI and stress on the batteries.

    Table and Figures | Reference | Related Articles | Metrics
    High-pressure gaseous hydrogen storage vessels: Current status and prospects
    Jian LI, Lixin ZHANG, Ruiyi LI, Xiao YANG, Ting ZHANG
    Energy Storage Science and Technology    2021, 10 (5): 1835-1844.   DOI: 10.19799/j.cnki.2095-4239.2021.0309
    Abstract1251)   HTML102)    PDF(pc) (6699KB)(1620)       Save

    This study introduced several high-pressure gaseous hydrogen storage containers, including high-pressure hydrogen storage cylinders, high-pressure composite hydrogen storage tanks, and glass hydrogen storage containers. High-pressure hydrogen storage cylinders include all-metal gas cylinders and fiber composite material-wound gas cylinders. The only commercially available high-pressure hydrogen storage container has the advantages of easy hydrogen release and high hydrogen concentration. The high-pressure composite hydrogen storage tank used hydrogen storage materials to store hydrogen and achieve solid hydrogen storage; the gap between the powder materials also participated in hydrogen storage to accomplish gas-solid mixed hydrogen storage. This method had the advantages of high volumetric hydrogen storage density, fast hydrogen charging speed, and good working performance at low temperatures. The glass hydrogen storage containers included hollow glass microspheres and a capillary glass array. This was a new type of high-pressure hydrogen storage container that had the advantages of high mass and volume density, good safety, low-cost parameters, and did not undergo hydrogen embrittlement. It was initially anticipated that this type of container would be combined with fuel cells and applied to various electronic mobile devices. However, due to imperfections in its related supporting devices, additional development is required for its commercial application. This paper compared the performance of several commercial high-pressure hydrogen storage tanks. It focused on the hydrogen storage mechanism, the technical status, and the research related to glass hydrogen storage tanks. It posited future technical research directions related to several types of hydrogen storage tanks.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress on energy storage technologies of China in 2022
    Haisheng CHEN, Hong LI, Yujie XU, Man CHEN, Liang WANG, Xingjian DAI, Dehou XU, Xisheng TANG, Xianfeng LI, Yongsheng HU, Yanwei MA, Yu LIU, Wei SU, Qingsong WANG, Jun CHEN, Ping ZHUO, Liye XIAO, Xuezhi ZHOU, Ziping FENG, Kai JIANG, Haijun YU, Yongbing TANG, Renjie CHEN, Yatao LIU, Yuxin ZHANG, Xipeng LIN, Huan GUO, Han ZHANG, Changkun ZHANG, Dongxu HU, Xiaohui RONG, Xiong ZHANG, Kaiqiang JIN, Lihua JIANG, Yumin PENG, Shiqi LIU, Yilin ZHU, Xing WANG, Xin ZHOU, Xuewu OU, Quanquan PANG, Zhenhua YU, Wei LIU, Fen YUE, Zhen LI, Zhen SONG, Zhifeng WANG, Wenji SONG, Haibo LIN, Jiecai LI, Bin YI, Fujun LI, Xinhui PAN, Li LI, Yiming MA, Huang LI
    Energy Storage Science and Technology    2023, 12 (5): 1516-1552.   DOI: 10.19799/j.cnki.2095-4239.2023.0330
    Abstract899)   HTML233)    PDF(pc) (3233KB)(1593)       Save

    Research progress on energy storage technologies of China in 2022 is reviewed in this paper. By reviewing and analyzing three aspects in terms of fundamental study, technical research, integration and demonstration, the progress on China's energy storage technologies in 2022 is summarized including hydro pumped energy storage, compressed air energy storage, flywheel, lithium-ion battery, lead battery, flow battery, sodium-ion battery, supercapacitor, new technologies, integration technology, firecontrol technology etc. It is found that important achievements in energy storage technologies have been obtained during 2022, and China is now the most active country in the world in energy storage fields on all the three aspects of fundamental study, technical research, integration and application.

    Table and Figures | Reference | Related Articles | Metrics
    Present situation and development of thermal management system for battery energy storage system
    Xinlong ZHU, Junyi WANG, Jiashuang PAN, Chuanzhi KANG, Yitao ZOU, Kaijie YANG, Hong SHI
    Energy Storage Science and Technology    2022, 11 (1): 107-118.   DOI: 10.19799/j.cnki.2095-4239.2021.0381
    Abstract858)   HTML78)    PDF(pc) (4043KB)(1510)       Save

    Battery energy storage system has broad development prospects due to its advantages of convenient installation and transportation, short construction cycle, and strong environmental adaptability. However, battery safety accidents of energy storage systems characterized by thermal runaways occur frequently, which seriously threatens power consumption and life safeties of relevant personnel with the continuous improvement of overall energy density and the reduction of manufacturing costs. Therefore, the research on preventing thermal runaway of battery energy storage systems has recently become a hot spot in the field of the energy storage system. From the perspective of energy storage battery safety, the mechanism and research status of thermal runaway of container energy storage system are summarized; the cooling methods of the energy storage battery (air cooling, liquid cooling, phase change material cooling, and heat pipe cooling) and the suppression measures of thermal runaway are introduced, and the latest research results are reviewed. This paper expounds on the influence of temperature and humidity on batteries, comprehensively outlines the methods to improve the safety and reliability of container energy storage systems, and projects the development direction of thermal management technology. This paper aims to promote the development of safety management methods and strategies of the energy storage system and then improve the energy storage system's safety.

    Table and Figures | Reference | Related Articles | Metrics
    Applying data-driven machine learning to studying electrochemical energy storage materials
    Siqi SHI, Zhangwei TU, Xinxin ZOU, Shiyu SUN, Zhengwei YANG, Yue LIU
    Energy Storage Science and Technology    2022, 11 (3): 739-759.   DOI: 10.19799/j.cnki.2095-4239.2022.0051
    Abstract891)   HTML212)    PDF(pc) (4199KB)(1506)       Save

    Materials are key to energy storage batteries. With experimental observations, theoretical research, and computational simulations, data-driven machine learning should provide a new paradigm for electrochemical energy storage material research and development. Its advantages include rapid capture of the complex structure-activity relationship between material composition, structure, process, and performance. In this study, the latest developments in employing machine learning in electrochemical energy storage materials are reviewed systematically from structured and unstructured data-driven perspectives. The material databases from China and abroad are summarized for electrochemical energy storage material use, and data collection and quality inspection problems are analyzed. Data-driven machine learning workflows and applications in electrochemical energy storage materials are demonstrated. They contain data collection, feature engineering, and machine learning modeling under structured data, and the model construction and application under unstructured data of graphics, representation images, and literature. Three principal contradictions and countermeasures faced by machine learning in electrochemical energy storage materials are highlighted: the contradiction and coordination of high-dimensional and small sample data, the contradiction and unity of model complexity and ease of use, and the contradiction and contradiction fusion between model learning results and expert experience. We highlighted that "Machine Learning Embedded with Domain Knowledge" construction should reconcile these contradictions. This review provides a reference for applying machine learning in electrochemical energy storage materials' design and performance optimization.

    Table and Figures | Reference | Related Articles | Metrics
    Review and prospective of solid-state lithium batteries in the past decade2011—2021
    Jinghua WU, Jing YANG, Gaozhan LIU, Zhiyan WANG, Zhihua ZHANG, Hailong YU, Xiayin YAO, Xuejie HUANG
    Energy Storage Science and Technology    2022, 11 (9): 2713-2745.   DOI: 10.19799/j.cnki.2095-4239.2022.0309
    Abstract856)   HTML264)    PDF(pc) (16864KB)(1485)       Save

    Solid-state lithium batteries with solid electrolyte rather than traditional liquid organic electrolyte could employ high specific capacity cathodes and anodes, resulting in high energy density devices with high safety, which is consistent with the future development direction of power sources for electric vehicles and large-scale energy storage. To accelerate the practical application of both solid-state and all-solid-state lithium batteries with high energy density, high safety, and long service life, scientists from all over the world have done a lot of work and made many breakthroughs from 2011 to 2022. Herein, in view of the challenges and opportunities for solid-state lithium batteries, the research progress of solid-state lithium batteries in the last decade, including solid electrolyte materials, electrode/electrolyte interface regulation, and solid-state battery technology, was reviewed. Finally, possible research directions and development trends for solid-state lithium batteries are also discussed.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress of hard carbon anode materials for sodium ion batteries
    Fei LIU, Peiwen ZHAO, Jingxiang ZHAO, Xianwei SUN, Miaomiao LI, Jinghao WANG, Yanxin YIN, Zuoqiang DAI, Lili ZHENG
    Energy Storage Science and Technology    2022, 11 (11): 3497-3509.   DOI: 10.19799/j.cnki.2095-4239.2022.0233
    Abstract1067)   HTML162)    PDF(pc) (12260KB)(1370)       Save

    With the development of high-performance electrode materials and the study of the mechanism, the electrochemical performance of sodium-ion batteries has been greatly improved. Hard carbon has become recognized as the most mature and commercialized anode material. However, it still faces problems such as low initial coulomb efficiency and poor rate capability. At the same time, great efforts have been devoted to in-depth research on the mechanism of sodium storage in hard carbons, and to explore synthetic methods to improve performance and reduce costs. However, there are still disagreements on the sodium storage mechanism, especially the sodium storage mechanism in the plateau region. Through the study of recent literature, based on the three different sodium storage processes of hard carbon material intercalation, adsorption and nanopore filling, the "intercalation-adsorption", "adsorption-intercalation" and other various forms of composite sodium storage mechanisms are emphatically introduced. Then, the effects of specific surface area, pores, defects, interlayer spacing and functional groups on the rate capability and initial Coulomb efficiency of hard carbon anode materials were analyzed based on the in-depth understanding of the sodium storage mechanism of hard carbon materials. At the same time, the effects of structure optimization and surface modification of coating method on improving the rate performance and initial coulombic efficiency of hard carbon anode materials are introduced. In order to promote the practical application of hard carbon, the effect of electrolyte optimization on improve the performance of ICE and rate capability of hard carbon is expounded. Comprehensive analysis shows that hard carbon material modification and electrolyte optimization are promising to achieve high rate capability, high initial coulombic efficiency and cycle stability at the same time.

    Table and Figures | Reference | Related Articles | Metrics
    Advances in battery-supercapacitor hybrid energy storage system
    Liangbo QIAO, Xiaohu ZHANG, Xianzhong SUN, Xiong ZHANG, Yanwei MA
    Energy Storage Science and Technology    2022, 11 (1): 98-106.   DOI: 10.19799/j.cnki.2095-4239.2021.0229
    Abstract1121)   HTML97)    PDF(pc) (3073KB)(1356)       Save

    Energy storage is a key supporting technology for solving the problem of large-scale grid connection of renewable energy generation, promoting the development of new energy vehicles, and achieving the medium-and long-term goals of carbon peak and carbon neutralization. The hybrid energy storage system composed of an energy-type energy storage device and a power-type energy storage device is an efficient system for energy and power management that gives full play to the durability of the energy-type energy storage and the rapidity of the power-type energy storage. It also greatly improves the comprehensive performance and economy of the energy storage system. This paper summarizes the energy and power electrochemical energy storage technologies, and characteristics and various battery-supercapacitor hybrid energy storage systems (BSHESS). The application of the hybrid energy storage system in the power grid energy storage, new energy vehicles, rail transit, and other fields is analyzed. The key technologies of the BSHESS, including their control and energy management, are analyzed in detail, and the control methods commonly used in the hybrid energy storage system are summarized. Moreover, an analysis of the parameter matching and technical economy of the BSHESS is performed. The topological structure classification of the BSHESS is summarized, and the advantages and disadvantages of each topological structure are discussed. In addition, a simulation comparison between the BSHESS and the single energy storage system is performed to verify the superiority of the former over the latter. Finally, development prospects are proposed.

    Table and Figures | Reference | Related Articles | Metrics
    Overview of research on composite electrolytes for solid-state batteries
    Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI
    Energy Storage Science and Technology    2021, 10 (6): 2117-2126.   DOI: 10.19799/j.cnki.2095-4239.2021.0178
    Abstract1340)   HTML157)    PDF(pc) (8723KB)(1330)       Save

    At the moment, there are numerous issues with single inorganic solid electrolytes and polymer solid electrolytes, such as low ionic conductivity, dendrite formation, unstable interfaces, and so on. In varying degrees, composite solid electrolytes formed by organic polymer electrolytes and inorganic electrolytes can improve conductivity, inhibit dendrite formation, improve mechanical strength, interface stability, and compatibility. This paper reviews the improvement direction and measures of composite solid-state electrolytes in improving lithium ion conductivity, inhibiting lithium dendrite, and improving electrochemical stability. In addition, the development direction of the composite solid-state battery is anticipated, which serves as a reference for the development and application of the composite solid-state battery.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress of polymer electrolyte for solid state lithium batteries
    ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan
    Energy Storage Science and Technology    2022, 11 (6): 1788-1805.   DOI: 10.19799/j.cnki.2095-4239.2022.0168
    Abstract1355)   HTML204)    PDF(pc) (10335KB)(1314)       Save

    Currently, the critical challenges of lithium-ion batteries are how to improve their energy density and safety. With the help of nonflammable solid electrolytes and improved compatibility with Li-metal-based anode, solid state lithium batteries can effectively alleviate these two issues. Solid polymer electrolyte (SPE) is one of the most promising solid-state-electrolytes because of its high flexibility, ease of processing, and good interfacial contact. The ionic conductivity, electrochemical window, and electrode stability all play important roles in the overall performance of solid lithium metal batteries. According to the different electrochemical stability windows, this study reviews the typical SPE systems classified by low-and high-voltage stable SPEs. The strategies of chemical modification, electrode/electrolyte interface engineering, and multilayer structure design are discussed, aiming to improve the ionic conductivity and broaden the electrochemical window of SPEs. This review summarizes the different electrochemical stability windows: ① Low-voltage-stable SPEs with good lithium metal compatibility and Li+ conductivity that can be improved by crosslinking, blending, copolymerization, and being composites with inorganic fillers; ② High-voltage-stable SPEs with lower highest occupied molecular orbital (HOMO) energy and match high voltage cathode for improving the energy density of lithium metal batteries; and ③ Multilayer SPE systems that can withstand the simultaneous reduction of lithium metal anode and oxidation of high voltage cathode, providing a new strategy for the development of high energy density batteries. These SPE systems summarize the research focus of low-voltage-stable SPE to improve ionic conductivity and mechanical properties. The key to high-voltage-stable SPE is to reduce the HOMO energy and/or establish a stable CEI layer with a cathode. The research focus of multilayer SPE is the appropriate design of battery and electrode structure. The construction of highly Li-conducting polymer structures, which can stabilize or form an interface passivating layer with both cathode and anode simultaneously, is a future research focus.

    Table and Figures | Reference | Related Articles | Metrics
    Understanding and performance prediction of ions-intercalation electrochemistry: From crystal field theory to ligand field theory
    Da WANG, Hang ZHOU, Yao JIAO, Jiamin WANG, Wei SHI, Bowei PU, Mingqing LI, Fanghua NING, Yuan REN, Jia YU, Yajie LI, Biao LI, Siqi SHI
    Energy Storage Science and Technology    2022, 11 (2): 409-433.   DOI: 10.19799/j.cnki.2095-4239.2021.0652
    Abstract1251)   HTML306)    PDF(pc) (14919KB)(1288)       Save

    The ligand field theory, which combines the electrostatic interaction of crystal fields and the covalent interaction of molecular orbitals, was first proposed in 1952. It has become the basis for studying many physical/chemical problems in thermodynamic, geological, mineralogical and electrochemical systems, such as structural distortion, thermodynamic properties and magnetism. Among them, for the rapidly developing mono-/poly-valent metal-ion batteries field, the electrode materials used are primarily transition metal (TM) compounds containing d electrons. However, the understanding of the regulation of microstructural/electronic performances with different coordination fields, such as ion-?(de)intercalating voltage, specific capacity and phase structure stability is still incompletely understood. In this paper, by combining the ligand field theory method and first-principles calculations (FP/DFT) that can directly obtain the system electronic distribution/occupancy, the Fermi level calculation model that determines the ions-intercalation voltage, the crystal field stabilization energy formula that measures the phase stability, and the theoretical model for regulating anionic redox activity are rigorously deduced. On this basis, we propose a series of electrodes energy-density/phase-stability improvement strategies, viz., voltage regulation of rigid band system and phase stabilization prediction of TM-containing electrodes with different TM period. Finally, two new cathodes, the TM-free Li(Na)BCF2/Li(Na)B2C2F2 and the lithium-free intercalation-type MX2 are successfully designed. This work expands the application of ligand field theory in ions-intercalation electrochemistry and opens up a new avenue for designing high-energy-density ions-intercalation electrode materials through electronic band structure regulation engineering.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress in LiFePO4 cathode material modification
    Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN
    Energy Storage Science and Technology    2022, 11 (2): 467-486.   DOI: 10.19799/j.cnki.2095-4239.2021.0483
    Abstract1649)   HTML215)    PDF(pc) (17878KB)(1285)       Save

    Lithium-ion batteries (LIBs), as secondary batteries, have rapidly developed into mainstream energy storage devices in the field of new energy. Lithium iron phosphate (LiFePO4) is considered the most promising cathode material for LIBs, with broad applications due to its high specific capacity, low cost, stable charge/discharge plateaus, environmental friendliness, and high safety. However, improving the output power, energy density, and cycle life at low temperatures is the main challenge for LiFePO4. By exploring the recent relevant literature, this review summarizes recent studies on improving the electrochemical performance of LiFePO4, which mainly includes elemental doping, surface coating modification, and lithium supplement additive adding strategies. The intrinsic mechanisms of improving the material's electrochemical performance using doping elements are analyzed in detail. The advantages and protection mechanisms of different types of coating agents for surface modification are summarized. The electronic conductivity and ion diffusion rate of LiFePO4 can be effectively improved by doping and surface coating, which can achieve batteries with higher energy density, longer cycle life, and higher rate performance. The characteristics of common lithium phosphate supplement additives and their improved behavior on the cathode first turn Coulomb efficiency and discharge-specific capacity are also reviewed. Comprehensive analysis indicates that multiple-element co-doping, advanced carbon material coating, and the addition of high-capacity Li-rich materials are expected to become essential strategies for improving the electrochemical performance of LiFePO4. Finally, prospects for the future development of LiFePO4 cathode material are discussed. The direction and challenges associated with additional advancements in commercial production and the development of flexible electrodes are discussed.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress of thermal runaway prevention and control technology for lithium battery energy storage systems
    Hang YU, Ying ZHANG, Chaohang XU, Sihan YU
    Energy Storage Science and Technology    2022, 11 (8): 2653-2663.   DOI: 10.19799/j.cnki.2095-4239.2022.0116
    Abstract868)   HTML130)    PDF(pc) (3231KB)(1283)       Save

    The frequent occurrence of lithium-ion battery fire accidents in energy storage power stations has drawn attention to the thermal runaway characteristics of lithium-ion batteries, as well as their prevention and control technology. In this study, the thermal runaway evolution process of lithium-ion batteries in energy storage power stations under external abuse conditions is divided into three stages and six processes, which are the early stage of thermal runaway, the occurrence stage of thermal runaway, and the initial stage of fire, as well as three stages of heat release and gas production, pressurization, smoke, fire burning, and gas explosion. Each stage of the entire evolution process is not independent, and the chemical reactions overlap and intersect. Because the combustion characteristics of energy-storage power station fires and traditional fires are significantly dissimilar, targeted prevention and control measures must be developed based on the characteristics of the thermal runaway evolution process. This study reviewed the recent research progress on the thermal runaway characteristics of lithium-ion batteries, as well as their prevention and control technology. In addition, the evolution process of thermal runaway of lithium-ion batteries, monitoring and early warning technology, thermal runaway suppression, and fire extinguishing technology are summarized and prospected in this study.

    Table and Figures | Reference | Related Articles | Metrics