储能科学与技术 ›› 2025, Vol. 14 ›› Issue (10): 3982-3989.doi: 10.19799/j.cnki.2095-4239.2025.0371

• 储能测试与评价 • 上一篇    下一篇

半固态与液态电解质大容量电池热失控产热产气特征对比

陈晔1,2,3,4(), 李晋1,2,3,4, 储玉喜1,2,3,4, 马畅1,2,3,4, 卓萍1,2,3,4()   

  1. 1.应急管理部天津消防研究所,天津 300381
    2.工业与公共建筑火灾防控技术应急管理部重点实验室,天津 300381
    3.天津市消防安全技术重点实验室,天津 300381
    4.电化学能源消防 安全联合创新应急管理部重点实验室,天津 300381
  • 收稿日期:2025-04-16 修回日期:2025-05-06 出版日期:2025-10-28 发布日期:2025-10-20
  • 通讯作者: 卓萍 E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn
  • 作者简介:陈晔(1988—),男,博士,副研究员,研究方向为锂离子电池、氢能火灾安全,E-mail:chenye@tfri.com.cn
  • 基金资助:
    国家重点研发计划(2022YFE0207400);内蒙古“科技突围”项目(2024KJTW0016)

Comparative analysis of heat and gas production characteristics during thermal runaway of semisolid and liquid electrolyte lithium-ion batteries

Ye CHEN1,2,3,4(), Jin LI1,2,3,4, Yuxi CHU1,2,3,4, Chang MA1,2,3,4, Ping ZHUO1,2,3,4()   

  1. 1.Tianjin Fire Research Institute of Emergency Management Department, Tianjin 300381, China
    2.Key Laboratory of Fire Protection Technology for Industry and Public Building, Ministry of Emergency Management, Tianjin 300381, China
    3.Tianjin Key Laboratory of Fire Safety Technology, Tianjin 300381, China
    4.Key Laboratory of Electrochemical Energy Safety, Ministry of Emergency Management, Tianjin 300381, China
  • Received:2025-04-16 Revised:2025-05-06 Online:2025-10-28 Published:2025-10-20
  • Contact: Ping ZHUO E-mail:chenye@tfri.com.cn;zhuoping@tfri.com.cn

摘要:

以固态电解质替代传统的液态电解质是锂离子电池本质安全水平提升的重要手段。为了探讨电解质固态化后大容量锂离子电池热失控产热产气特征改善情况,本工作将已商业化应用的磷酸铁锂体系半固态电解质电池(LFP-SS)与液态电解质电池(LFP-L)和三元体系液态电解质电池(NCM523)进行了对比研究。结果表明,LFP-SS的热失控起始温度未超过220 ℃而最高温度超过470 ℃,热安全性能略差于LFP-L;LFP-SS热失控后的单位容量产气量为0.541 L/Ah,高于LFP-L,但两种电池热失控产生混合气体各组分比例未有明显差异,且LFP-SS电池的爆炸极限范围更窄;与45 Ah半固态电解质软包磷酸铁锂(LFP)电池相比,LFP-SS大容量电池的热失控危害增强,但爆炸风险降低;NCM523电池的热稳定性和热安全性明显低于LFP电池,单位容量产气体积是LFP电池的3.4~4.2倍,但产生混合气中的氢气比例约为LFP电池的1/2,爆炸极限范围亦窄于LFP电池。

关键词: 电池, 半固态, 热失控, 产热, 产气

Abstract:

Replacing traditional liquid electrolytes with solid-state electrolytes is a critical strategy for enhancing the intrinsic safety of lithium-ion batteries. To evaluate the impact of electrolyte solidification on heat and gas generation during thermal runaway, this study compares commercially available semi-solid electrolyte lithium iron phosphate batteries (LFP-SS) with liquid electrolyte lithium iron phosphate batteries (LFP-L) and liquid electrolyte ternary battery (NCM523). The results show that the thermal runaway initiation temperature of LFP-SS does not exceed 220 ℃, while its peak temperature exceeds 470 ℃, suggesting slightly lower thermal safety than LFP-L. The unit capacity gas production of LFP-SS after thermal runaway is 0.541 L/Ah, which is higher than that of LFP-L. However, both batteries produce mixed gases with similar compositions, although the explosion limit range of LFP-SS is narrower. Compared with the 45 Ah semisolid electrolyte LFP soft pack battery, the large-capacity LFP-SS cell exhibits intensified thermal hazards but reduced explosion risk. The NCM523 battery demonstrates significantly lower thermal stability and safety than both LFP types, with gas production per unit capacity 3.4—4.2 times higher. However, its hydrogen content is approximately half that of the LFP batteries, and its explosion limit range is also narrower.

Key words: battery, semi-solid electrolyte, thermal runaway, heat generation, gas generation

中图分类号: