储能科学与技术

• XXXX •    

共价三嗪框架材料诱导稳定的Na/NASICON界面

李子琛(), 孙钰婷, 张化璞, 张梦迪, 闫迎春(), 张维民, 孟秀霞, 杨乃涛()   

  1. 山东理工大学化学化工学院,山东 淄博 255000
  • 收稿日期:2025-06-03 修回日期:2025-06-10 出版日期:2025-06-30
  • 通讯作者: 闫迎春,杨乃涛 E-mail:lzchen99@163.com;yingchyan07@163.com;naitaoyang@126.com
  • 作者简介:李子琛(1999—),男,硕士,从事NASICON基固态电解质制备与界面调控及钠电应用研究,E-mail:lzchen99@163.com
  • 基金资助:
    国家自然科学基金(21978157);山东省自然科学基金(ZR2022QB147)

Covalent triazine framework material induces a stable Na/NASICON interface

Zichen LI(), Yuting SUN, Huapu ZHANG, Mengdi ZHANG, Yingchun YAN(), Weimin ZHANG, Xiuxia MENG, Naitao YANG()   

  1. School of Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
  • Received:2025-06-03 Revised:2025-06-10 Online:2025-06-30
  • Contact: Yingchun YAN, Naitao YANG E-mail:lzchen99@163.com;yingchyan07@163.com;naitaoyang@126.com

摘要:

NASICON基固态电解质(Na3Zr2Si2PO12, NZSP),凭借高离子电导率、优异的化学稳定性、以及宽电化学窗口等优点,被认为是下一代高能量密度固态钠离子电池具有竞争力的电解质材料。然而,NZSP电解质与钠负极间的刚性界面接触不良,会导致界面电阻增大,引起不均匀的Na沉积/剥离。为此,本文制备了共价三嗪框架(CTF),并将其用作NZSP电解质的界面修饰层。CTF材料具有良好的电子绝缘特性,可以有效避免电子穿过电解质引起电池内部短路,并且因其软界面接触能够有效降低界面阻抗。密度泛函理论计算表明,CTF修饰层表面的负电性位点能够促进Na+的迁移,并引导Na均匀性沉积/剥离,从而有效抑制电解质内部Na枝晶的生长。实验结果表明,经过修饰后的钠对称电池的临界电流密度提升至0.5 mA cm-2,在0.1 mA cm-2下实现200 h的稳定循环,组装的Na||Na3V2(PO4)3/C表现出更好的倍率性能和长期循环稳定性能。本研究通过在NZSP电解质表面引入CTF修饰层,有效改善了电极/电解质界面稳定性,为构建高性能固态钠金属电池提供了有效的界面工程策略。

关键词: 钠离子电池, 固态电解质, 共价三嗪框架, NASICON, 界面修饰

Abstract:

NASICON-based solid electrolyte (Na3Zr2Si2PO12, NZSP), renowned for its high ionic conductivity, excellent chemical stability, and wide electrochemical window, is considered a competitive electrolyte material for next-generation high-energy-density solid-state sodium-ion batteries. However, the rigid interfacial contact between the NZSP electrolyte and the sodium anode often leads to increased interfacial resistance and non-uniform Na deposition/stripping. To address this issue, we prepared a covalent triazine framework (CTF) and employed it as an interfacial modification layer for the NZSP electrolyte. The CTF material exhibits excellent electron-insulating properties, effectively preventing electron penetration through the electrolyte that could cause internal short circuits in batteries. Additionally, its soft interfacial contact characteristic significantly reduces interfacial impedance. Density functional theory calculations reveal that the electronegative sites on the surface of the CTF modification layer can promote the migration of Na+ and guide uniform Na deposition/stripping, thus effectively suppressing the growth of Na dendrites within the electrolyte. Experimental results demonstrate that the critical current density of the sodium symmetric cell after modification is enhanced to 0.5 mA cm-2, achieving stable cycling for 200 h at 0.1 mA cm-2. The assembled Na||Na3V2(PO4)3/C battery exhibits improved rate performance and long-term cycling stability. This work enhances the electrode/electrolyte interface stability by introducing a CTF modification layer on the NZSP electrolyte surface, providing a viable interface engineering strategy for constructing high-performance solid-state sodium metal batteries.

Key words: Sodium-ion batteries, Solid-state electrolytes, Covalent triazine framework, NASICON, Interface retouching

中图分类号: