1 |
GUO Z, QIAN G, WANG C, et al. Progress in electrode materials for the industrialization of sodium-ion batteries[J]. Progress in Natural Science: Materials International, 2023, 33(1): 1-7. DOI: 10.1016/j.pnsc.2022.12.003.
|
2 |
刘德帅, 朱慧琴, 孙睿浩, 等. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. DOI: 10.19799/j.cnki.2095-4239.2024.1143.
|
|
LIU D, ZHU H, SUN R, etal. Synergistic dual-additive boost cyclability of sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1858-1865. DOI: 10.19799/j.cnki.2095-4239.2024.1143.
|
3 |
DENG J, LUO W-B, CHOU S-L, et al. Sodium-ion batteries: from academic research to practical commercialization[J]. Advanced Energy Materials, 2018, 8(4): 1701428. DOI: 10.1002/aenm.201701428.
|
4 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. DOI: 10.1038/35104644.
|
5 |
李昱, 李丹丹, 谢飞, 等. 钠离子电池正极预钠化技术进展[J]. 储能科学与技术, 2015, 14(5): 1748-1757. DOI: 10.19799/j.cnki.2095-4239.2024.1085.
|
|
LI Y, Li D, XIE F, etal. Recent progress of cathode presodiation strategies in sodium-ion batteries[J]. Energy Storage Science and Technology, 2025, 14(5): 1748-1757. DOI: 10.19799/j.cnki.2095-4239.2024.1085.
|
6 |
THIRUPATHI R, KUMARI V, CHAKRABARTY S, et al. Recent progress and prospects of NASICON framework electrodes for Na-ion batteries[J]. Progress in Materials Science, 2023, 137: 101128. DOI: 10.1016/j.pmatsci.2023.101128.
|
7 |
XIANG L, LI X, XIAO J, et al. Interface issues and challenges for NASICON-based solid-state sodium-metal batteries[J]. Advanced Powder Materials, 2024, 3(3): 100181. DOI: 10.1016/j.apmate.2024.100181.
|
8 |
ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): 1703012. DOI: 10.1002/aenm.201703012.
|
9 |
LU X, LEMMON J P, SPRENKLE V, et al. Sodium-beta alumina batteries: status and challenges[J]. Jom, 2010, 62(9): 31-36. DOI: 10.1007/s11837-010-0132-5.
|
10 |
ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries[J]. Nature Energy, 2019, 4(5): 365-373. DOI: 10.1038/s41560-019-0349-7.
|
11 |
LI Z, LIU P, ZHU K, et al. Solid-state electrolytes for sodium metal batteries[J]. Energy & Fuels, 2021, 35(11): 9063-9079. DOI: 10.1021/acs.energyfuels.1c00347.
|
12 |
FU F, ZHENG Y, JIANG N, et al. A dual-salt PEO-based polymer electrolyte with cross-linked polymer network for high-voltage lithium metal batteries[J]. Chemical Engineering Journal, 2022, 450: 137776. DOI: 10.1016/j.cej.2022.137776.
|
13 |
GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. DOI: 10.1016/0025-5408(76)90077-5.
|
14 |
TIAN H, LIU S, DENG L, et al. New-type Hf-based NASICON electrolyte for solid-state Na-ion batteries with superior long-cycling stability and rate capability[J]. Energy Storage Materials, 2021, 39: 232-238. DOI: 10.1016/j.ensm.2021.04.026.
|
15 |
WANG J, HE T, YANG X, et al. Design principles for NASICON super-ionic conductors[J]. Nature Communications, 2023, 14(1): 5210. DOI: 10.1038/s41467-023-40669-0.
|
16 |
ZHANG Q, ZHOU Q, LU Y, et al. Modification of NASICON electrolyte and its application in real Na-ion cells[J]. Engineering, 2022, 8: 170-180. DOI: 10.1016/j.eng.2021.04.028.
|
17 |
XUN B, WANG J, SATO Y, et al. Bifunctional Al dopant for enhancing bulk and grain boundary conductivities in sodium ion conducting NASICON ceramics[J]. Advanced Energy Materials, 2024, 15(4): 2402891. DOI: 10.1002/aenm.202402891.
|
18 |
GUO Y, PAN S, YI X, et al. Fluorinating all interfaces enables super‐stable solid‐state lithium batteries by in situ conversion of detrimental surface Li2CO3[J]. Advanced Materials, 2023, 36(13): 2308493. DOI: 10.1002/adma.202308493.
|
19 |
LU Y, ZHAO C-Z, HUANG J-Q, et al. The timescale identification decoupling complicated kinetic processes in lithium batteries[J]. Joule, 2022, 6(6): 1172-1198. DOI: 10.1016/j.joule.2022.05.005.
|
20 |
WAN H, WANG Z, LIU S, et al. Critical interphase overpotential as a lithium dendrite-suppression criterion for all-solid-state lithium battery design[J]. Nature Energy, 2023, 8(5): 473-481. DOI: 10.1038/s41560-023-01231-w.
|
21 |
LUO W, LIN C F, ZHAO O, et al. Ultrathin surface coating enables the stable sodium metal anode[J]. Advanced Energy Materials, 2016, 7(2): 1601526. DOI: 10.1002/aenm.201601526.
|
22 |
YANG Y, YANG S, XUE X, et al. Inorganic all-solid-state sodium batteries: electrolyte designing and interface engineering[J]. Advanced Materials, 2023, 36(1): 2308332. DOI: 10.1002/adma.202308332.
|
23 |
ZUO D, YANG L, ZOU Z, et al. Ultrafast synthesis of NASICON solid electrolytes for sodium-metal batteries[J]. Advanced Energy Materials, 2023, 13(37): 2301540. DOI: 10.1002/aenm.202301540.
|
24 |
JASCHIN P W, TANG C R, WACHSMAN E D. High-rate cycling in 3D dual-doped NASICON architectures toward room-temperature sodium-metal-anode solid-state batteries[J]. Energy & Environmental Science, 2024, 17(2): 727-737. DOI: 10.1039/d3ee03879c.
|
25 |
CAI S, MENG W, TIAN H, et al. Artificial porous heterogeneous interface for all-solid-state sodium ion battery[J]. Journal of Colloid and Interface Science, 2023, 632: 179-185. DOI: 10.1016/j.jcis.2022.11.037.
|
26 |
WEI B, HUANG S, WANG X, et al. Intermediate phase induced in situ self-reconstruction of amorphous NASICON for long-life solid-state sodium metal batteries[J]. Energy & Environmental Science, 2025, 18: 831-840. DOI: 10.1039/d4ee01743a.
|
27 |
YU X, XUE L, GOODENOUGH J B, et al. Ambient-temperature all-solid-state sodium batteries with a laminated composite electrolyte[J]. Advanced Functional Materials, 2020, 31(2): 2002144. DOI: 10.1002/adfm.202002144.
|
28 |
OH J A S, SUN J, GOH M, et al. A robust solid-solid interface using sodium-tin alloy modified metallic sodium anode paving way for all‐solid‐state battery[J]. Advanced Energy Materials, 2021, 11(32): 2101228. DOI: 10.1002/aenm.202101228.
|
29 |
NIU W, CHEN L, LIU Y, et al. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J]. Chemical Engineering Journal, 2020, 384: 123233. DOI: 10.1016/j.cej.2019.123233.
|
30 |
ZHAO R, GAO L, SONG M, et al. Stabilization of NASICON-type electrolyte against Li anode via an ionic conductive MOF-incorporated adhesive interlayer[J]. ACS Energy Letters, 2021, 6(9): 3141-3150. DOI: 10.1021/acsenergylett.1c01551.
|
31 |
ZHAO T, ZHENG X, WANG D, et al. A quasi‐solid‐state polyether electrolyte for low‐temperature sodium metal batteries[J]. Advanced Functional Materials, 2023, 33(48): 2304928. DOI: 10.1002/adfm.202304928.
|
32 |
CHI X, ZHANG Y, HAO F, et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries[J]. Nature Communications, 2022, 13(1): 2854. DOI: 10.1038/s41467-022-30517-y.
|
33 |
YANG Z, CHEN H, WANG S, et al. Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking[J]. Journal of the American Chemical Society, 2020, 142(15): 6856-6860. DOI: 10.1021/jacs.0c00365.
|
34 |
LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2011, 33(5): 580-592. DOI: 10.1002/jcc.22885.
|
35 |
XIANG L, GAO Y, DING Y, et al. Self-forming Na3P/Na2O interphase on a novel biphasic Na3Zr2Si2PO12/Na3PO4 solid electrolyte for long-cycling solid-state Na-metal batteries[J]. Energy Storage Materials, 2024, 73: 103381. DOI: 10.1016/j.ensm.2024.103831.
|
36 |
OUYANG B, WANG J, HE T, et al. Synthetic accessibility and stability rules of NASICONs[J]. Nature Communications, 2021, 12(1): 5752. DOI: 10.1038/s41467-021-26006-3.
|
37 |
JIA J, LIU T, LI Y, et al. Calcium doped NASICON electrolyte with graphite coating for stable all‐solid‐state sodium metal batteries[J]. ChemSusChem, 2024, 17(17): 1-7. DOI: 10.1002/cssc.202400481.
|
38 |
NIU C, LUO W, DAI C, et al. High‐voltage‐tolerant covalent organic framework electrolyte with holistically oriented channels for solid‐state lithium metal batteries with nickel‐rich cathodes[J]. Angewandte Chemie International Edition, 2021, 60(47): 24915-24923. DOI: 10.1002/ange.202107444.
|
39 |
YAN Y, LIU Z, WAN T, et al. Bioinspired design of Na-ion conduction channels in covalent organic frameworks for quasi-solid-state sodium batteries[J]. Nature Communications, 2023, 14(1): 3066. DOI: 10.1038/s41467-023-38822-w.
|
40 |
FUCHS T, HASLAM C G, RICHTER F H, et al. Evaluating the use of critical current density tests of symmetric lithium transference cells with solid electrolytes[J]. Advanced Energy Materials, 2023, 13(45): 2302383. DOI: 10.1002/aenm. 202302383.
|