| [1] |
WANG T Y, KRETSCHMER K, CHOI S, et al. Fabrication methods of porous carbon materials and separator membranes for lithium-sulfur batteries: Development and future perspectives[J]. Small Methods, 2017, 1(8): 1700089. DOI: 10.1002/smtd. 201700089.
|
| [2] |
CHEN Y, WANG T Y, TIAN H J, et al. Advances in lithium-sulfur batteries: From academic research to commercial viability[J]. Advanced Materials, 2021, 33(29): 2003666. DOI: 10.1002/adma. 202003666.
|
| [3] |
ZHAO Y Y, YE Y S, WU F, et al. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2019, 31(12): 1806532. DOI: 10.1002/adma. 201806532.
|
| [4] |
XU X L, WANG S J, WANG H, et al. The suppression of lithium dendrite growth in lithium sulfur batteries: A review[J]. Journal of Energy Storage, 2017, 13: 387-400. DOI: 10.1016/j.est. 2017. 07.031.
|
| [5] |
ZHANG Q, LI F, HUANG J Q, et al. Lithium-sulfur batteries: Co-existence of challenges and opportunities[J]. Advanced Functional Materials, 2018, 28(38): 1804589. DOI: 10.1002/adfm. 201804589.
|
| [6] |
WEI Z H, REN Y Q, SOKOLOWSKI J, et al. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries[J]. InfoMat, 2020, 2(3): 483-508. DOI: 10.1002/inf2.12097.
|
| [7] |
WANG W, XI K, LI B W, et al. A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2022, 12(19): 2200160. DOI: 10.1002/aenm. 202200160.
|
| [8] |
QIU T J, LIANG Z B, GUO W H, et al. Metal-organic framework-based materials for energy conversion and storage[J]. ACS Energy Letters, 2020, 5(2): 520-532. DOI: 10.1021/acsenergylett. 9b02625.
|
| [9] |
CAI Z X, WANG Z L, KIM J, et al. Hollow functional materials derived from metal-organic frameworks: Synthetic strategies, conversion mechanisms, and electrochemical applications[J]. Advanced Materials, 2019, 31(11): 1804903. DOI: 10.1002/adma. 201804903.
|
| [10] |
WANG Y J, CHENG H Y, HOU J Y, et al. CoNi-based bimetal-organic framework derived carbon composites multifunctionally modified separators for lithium-sulfur batteries[J]. Journal of Electrochemistry, 2023, 29(3). DOI: 10.13208/j.electrochem. 2217002.
|
| [11] |
YANG Y Q, MA S L, XIA M Q, et al. Elaborately converting hierarchical NiCo-LDH to rod-like LDH-decorated MOF as interlayer for high-performance lithium-sulfur battery[J]. Materials Today Physics, 2023, 35: 101112. DOI: 10.1016/j.mtphys. 2023. 101112.
|
| [12] |
ZHANG X, LIU Z Q, QU N, et al. Hollow Ni/co-MOFs with controllable surface structure as electrode materials for high performance supercapacitors[J]. Advanced Materials Interfaces, 2022, 9(30): 2201431. DOI: 10.1002/admi.202201431.
|
| [13] |
LENG X L, ZENG J, YANG M D, et al. Bimetallic Ni-Co MOF@PAN modified electrospun separator enhances high-performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2023, 82: 484-496. DOI: 10.1016/j.jechem. 2023. 03.017.
|
| [14] |
LIU Y H, LI L X, WEN A Y, et al. A Janus MXene/MOF separator for the all-in-one enhancement of lithium-sulfur batteries[J]. Energy Storage Materials, 2023, 55: 652-659. DOI: 10.1016/j.ensm.2022.12.028.
|
| [15] |
HUSSAIN I, IQBAL S, HUSSAIN T, et al. An oriented Ni-Co-MOF anchored on solution-free 1D CuO: A p-n heterojunction for supercapacitive energy storage[J]. Journal of Materials Chemistry A, 2021, 9(33): 17790-17800. DOI: 10.1039/D1TA04855D.
|
| [16] |
LIM W G, PARK C Y, JUNG H, et al. Cooperative electronic structure modulator of Fe single-atom electrocatalyst for high energy and long cycle Li-S pouch cell[J]. Advanced Materials, 2023, 35(10): 2208999. DOI: 10.1002/adma.202208999.
|
| [17] |
LIU B R, TAHERI M, TORRES J F, et al. Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteries[J]. ACS Nano, 2020, 14(10): 13852-13864. DOI: 10.1021/acsnano.0c06221.
|
| [18] |
WU X X, ZHOU C, DONG C X, et al. Polydopamine-assisted in situ formation of dense MOF layer on polyolefin separator for synergistic enhancement of lithium-sulfur battery[J]. Nano Research, 2022, 15(9): 8048-8055. DOI: 10.1007/s12274-022-4423-2.
|
| [19] |
ZHANG Z, WANG J N, SHAO A H, et al. Recyclable cobalt-molybdenum bimetallic carbide modified separator boosts the polysulfide adsorption-catalysis of lithium sulfur battery[J]. Science China Materials, 2020, 63(12): 2443-2455. DOI: 10.1007/s40843-020-1425-2.
|
| [20] |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011, 11(1): 19-29. DOI: 10.1038/nmat3191.
|
| [21] |
BAI S Y, LIU X Z, ZHU K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094. DOI: 10.1038/nenergy.2016.94.
|
| [22] |
LENG X L, XIAO W, YANG M D, et al. Boosting the cycle stability and safety of lithium-sulfur batteries via a bilayer, heat-treated electrospun separator[J]. Electrochimica Acta, 2023, 437: 141506. DOI: 10.1016/j.electacta.2022.141506.
|
| [23] |
YANG B, WANG J Y, QI Y H, et al. Strong internal electric field enhanced polysulfide trapping and ameliorates redox kinetics for lithium-sulfur battery[J]. Journal of Energy Chemistry, 2023, 77: 376-383. DOI: 10.1016/j.jechem.2022.10.045.
|
| [24] |
HUA W X, LI H, PEI C, et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries[J]. Advanced Materials, 2021, 33(38): e2101006. DOI: 10.1002/adma. 202101006.
|
| [25] |
HUANG J K, LI M L, WAN Y, et al. Functional two-dimensional coordination polymeric layer as a charge barrier in Li-S batteries[J]. ACS Nano, 2018, 12(1): 836-843. DOI: 10.1021/acsnano.7b08223.
|
| [26] |
LIU W J, ZHU F F, GE B X, et al. MOF derived ZnO/C@(Ni, Co)Se2 core-shell nanostructure on carbon cloth for high-performance supercapacitors[J]. Chemical Engineering Journal, 2022, 427: 130788. DOI: 10.1016/j.cej.2021.130788.
|