[1] |
YAO X, LI D, GUO L, et al. Carbon-coated LiMn0.8Fe0.2PO4 cathodes for high-rate lithium-ion batteries[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 63.
|
[2] |
SCHMUCH R, WAGNER R, HöRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature energy, 2018, 3(4): 267-278.
|
[3] |
WANG L, ZHANG H, LIU Q, et al. Modifying high-voltage olivine-type LiMnPO4 cathode via Mg substitution in high-orientation crystal[J]. ACS Applied Energy Materials, 2018, 1(11): 5928-5935.
|
[4] |
YANG H, DUH J-G, CHEN H-Y, et al. Synthesis and in-situ investigation of olivine LiMnPO4 composites substituted with tetravalent vanadium in high-rate Li-ion batteries[J]. ACS Applied Energy Materials, 2018, 1(11): 6208-6216.
|
[5] |
ZHANG J, WEI H, CAO Y, et al. Hierarchical LiMnPO4·Li3V2(PO4)3/C/rGO nanocomposites as superior-rate and long-life cathodes for lithium ion batteries[J]. Journal of Alloys and Compounds, 2018, 769: 332-339.
|
[6] |
TARASCON J-M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367.
|
[7] |
ARMAND M, TARASCON J-M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
[8] |
LIU J, XU C, CHEN Z, et al. Progress in aqueous rechargeable batteries[J]. Green Energy & Environment, 2018, 3(1): 20-41.
|
[9] |
HAN Q, CAI L, YANG Z, et al. New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries[J]. Green Energy & Environment, 2022.
|
[10] |
SOCIETY E. Journal of the Electrochemical Society, F, 2009[C]. Electrochemical Society.
|
[11] |
QIAN J, ZHOU M, CAO Y, et al. Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2010, 114(8): 3477-3482.
|
[12] |
LI L-E, LIU J, CHEN L, et al. Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4–C nanocomposites[J]. RSC Advances, 2013, 3(19): 6847-6852.
|
[13] |
NORBERG N S, KOSTECKI R. The degradation mechanism of a composite LiMnPO4 cathode[J]. Journal of the Electrochemical Society, 2012, 159(9): A1431.
|
[14] |
WEN F, SHU H, ZHANG Y, et al. Mesoporous LiMnPO4/C nanoparticles as high performance cathode material for lithium ion batteries[J]. Electrochimica Acta, 2016, 214: 85-93.
|
[15] |
WANG Y, WANG F, FENG X. Porous nest-like LiMnPO4 microstructures assembled by nanosheets for lithium ion battery cathodes[J]. Journal of Materials Science: Materials in Electronics, 2018, 29: 1426-1434.
|
[16] |
HAN J, YANG J, LU H, et al. Effect of synthesis processes on the microstructure and electrochemical properties of LiMnPO4 cathode material[J]. Industrial & Engineering Chemistry Research, 2022, 61(22): 7451-7463.
|
[17] |
MARTHA S K, GRINBLAT J, HAIK O, et al. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries[J]. ChemInform, 2010, 41(1): i.
|
[18] |
SUN Y K, OH S M, PARK H K, et al. Micrometer‐sized, nanoporous, high‐volumetric‐capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium‐ion batteries[J]. Advanced Materials, 2011, 43(23): 5050-5054.
|
[19] |
YONEMURA M, YAMADA A, TAKEI Y, et al. Comparative kinetic study of olivine LixMPO4(M=Fe,Mn)[J]. Journal of the Electrochemical Society, 2004, 151(9): A1352.
|
[20] |
WANG Y, YANG H, WU C-Y, et al. Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(35): 18674-18683.
|
[21] |
YAN X, SUN D, WANG Y, et al. Enhanced electrochemical performance of LiMn0.75Fe0.25PO4 nanoplates from multiple interface modification by using fluorine-doped carbon coating[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4637-4644.
|
[22] |
LUO S-H, SUN Y, BAO S, et al. Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability[J]. Journal of Electroanalytical Chemistry, 2019, 832: 196-203.
|
[23] |
LUO C, JIANG Y, ZHANG X, et al. Misfit strains inducing voltage decay in LiMnyFe1-yPO4/C[J]. Journal of Energy Chemistry, 2022, 68: 206-212.
|
[24] |
PLEUKSACHAT S, KRABAO P, PONGHA S, et al. Dynamic phase transition behavior of a LiMn0.5Fe0.5PO4 olivine cathode material for lithium-ion batteries revealed through in-situ X-ray techniques[J]. Journal of Energy Chemistry, 2022, 71: 452-459.
|
[25] |
SIN B C, SINGH L, LEE K-E, et al. Enhanced electrochemical performance of LiFe0.4Mn0.6(PO4)1-x(BO3)x as cathode material for lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2015, 756: 56-60.
|
[26] |
LIU Y, CHANG C, ZHENG J. Revealing the role of Mg doping in LiFe0.39Mg0.01Mn0.6PO4/C cathode: Enhanced electrochemical performance from improved electrical conductivity and promoted lithium diffusion kinetics[J]. Journal of Energy Storage, 2024, 91: 112108.
|
[27] |
ZHANG Q, LIU Y, CHANG C, et al. Modulating the lattice structure via Cr3+ doping in LiFe0.4Mn0.6PO4 cathode for improved rate behavior and promoted cyclic performance[J]. Journal of Energy Storage, 2024, 101: 113799.
|
[28] |
JIN H, ZHANG J, QIN L, et al. Dual modification of olivine LiFe0.5Mn0.5PO4 cathodes with accelerated kinetics for high-rate lithium-ion batteries[J]. Industrial & Engineering Chemistry Research, 2023, 62(2): 1029-1034.
|
[29] |
NANNAN Z, YONGSHENG L, XIAOKE Z, et al. Effect of Ce3+ doping on the properties of LiFePO4 cathode material[J]. Journal of Rare Earths, 2016, 34(2): 174-180.
|