储能科学与技术

• •    

Ce掺杂对抑制LiFe0.6Mn0.4PO4/C正极材料中Mn金属溶解的作用

赵万炜(), 杨亚东, 靳光耀, 梁闻予, 李建强, 徐睿()   

  1. 北京科技大学材料科学与工程学院,北京 100083
  • 收稿日期:2025-06-24 修回日期:2025-08-05
  • 通讯作者: 徐睿 E-mail:m202210415@xs.ustb.edu.cn;b2071142@ustb.edu.cn
  • 作者简介:赵万炜(2000—),男,硕士,无,研究方向:磷酸锰铁锂正极材料的合成及改性,E-mail:m202210415@xs.ustb.edu.cn
  • 基金资助:
    中央高校基本科研业务费(FRF-TP-24-001A)

Contribution of Ce-Doping to suppressing metal dissolution in LiFe0.6Mn0.4PO4/C cathode materials

Wanwei Zhao(), Yadong Yang, Guangyao Jin, Wenyu Liang, Jianqiang Li, Rui Xu()   

  1. Department of Materials Science and Technology, University of science and technology Beijing, Beijing 100083, China
  • Received:2025-06-24 Revised:2025-08-05
  • Contact: Rui Xu E-mail:m202210415@xs.ustb.edu.cn;b2071142@ustb.edu.cn

摘要:

磷酸锰铁锂(LiFexMn1-xPO4, LFMP)因其低成本和安全优势,兼具LiFePO4的良好的循环性能和LiMnPO4的高能量密度,正逐渐成为一种安全可靠的商业化锂离子电池存储材料。然而,LFMP中较严重的晶格应力及充电时Mn3+引起的Jahn-Teller畸变导致了其较低的锂离子扩散速率以及电导率,这限制了其进一步的工业应用。针对这一问题,本研究采用球磨辅助固相烧结的方法制备了Ce掺杂的LiFe0.6Mn0.4PO4/C(LFMP/C-Ce),并分析了不同掺杂含量下材料的电化学性能。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等技术表征了这些材料的成分、表面形貌和微观形貌,这些分析证实了Ce离子成功掺杂到橄榄石晶格过渡金属(Mn)的位点当中,减少了晶格应力,延长了Li-O键,同时缩短了Mn-O键,从而缓解了Jahn-Teller畸变。使用恒流恒压充放电测试、恒电流间歇滴定(GITT)、循环伏安法(CV)和电化学阻抗谱(EIS)等技术评估了样品的电化学性能。结果表明,掺杂1%Ce(LFMP/C-Ce1%)可获得最佳的循环性能。LFMP/C-Ce1%在1 C下经过500次循环后表现出92.6%的容量保持率。电感耦合等离子体发射光谱(ICP-OES)分析证实,该掺杂水平可有效抑制循环后Mn金属溶解,从而提高LFMP正极材料的电化学性能和稳定性。

关键词: 锂离子电池, 磷酸锰铁锂, 过渡金属溶解, 阳离子掺杂

Abstract:

LiFexMn1-xPO4 (LFMP) is gradually emerging as a safe and reliable commercial lithium battery storage material due to its low cost and safety advantages, combining the excellent cycling stability of LiFePO4 with the high energy density of LiMnPO4. However, severe lattice stress and the Jahn–Teller distortion caused by Mn3+ during charging lead to low lithium-ion diffusion rates and poor electrical conductivity in LFMP, limiting its further industrial application. To address this issue, this study synthesized Ce-doped LiFe0.6Mn0.4PO4/C (LFMP/C-Ce) via ball milling-assisted solid-state sinteringand investigated the electrochemical performance of materials with different doping levels. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to characterize the composition, surface morphology, and microstructure of the materials. The analyses confirmed the successful incorporation of Ce ions into the olivine lattice, which reduced lattice stress, elongated Li–O bonds, and shortened Mn–O bonds, thereby mitigating the Jahn–Teller distortion. The electrochemical performance of the samples was evaluated using constant current–constant voltage charge–discharge testing, galvanostatic intermittent titration technique (GITT), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results showed that doping with 1% Ce (LFMP/C-Ce1%) achieved the best cycling performance. LFMP/C-Ce1% retained 92.6% of its capacity after 500 cycles at 1 C. Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis confirmed that this doping level effectively suppresses Mn dissolution after cycling, thereby enhancing the electrochemical performance and stability of the LFMP cathode material.

Key words: Lithium-ion battery, Transition metal dissolution, Cation doping

中图分类号: