储能科学与技术 ›› 2025, Vol. 14 ›› Issue (8): 3019-3027.doi: 10.19799/j.cnki.2095-4239.2025.0658

• 短时高频高功率储能专辑 • 上一篇    下一篇

人工智能在飞轮储能中的应用

魏路1,2(), 冷至益1,3,4, 叶佳1,3,4, 徐玉杰1,2,3, 陈海生1,2,3()   

  1. 1.中国科学院工程热物理研究所,北京 100190
    2.长时规模储能重点实验室(中国科学院),北京 100190
    3.中国科学院大学,北京 100049
    4.中科南京未来能源系统研究院,江苏 南京 211135
  • 收稿日期:2025-07-22 修回日期:2025-08-01 出版日期:2025-08-28 发布日期:2025-08-18
  • 通讯作者: 陈海生 E-mail:weilu@iet.cn;chen_hs@iet.cn
  • 作者简介:魏路(1983—),男,硕士,工程师,主要研究方向为电力电子与电力传动,E-mail:weilu@iet.cn
  • 基金资助:
    国家重点研发计划资助项目(2024YFB2408400)

Application of artificial intelligence in flywheel energy storage

Lu WEI1,2(), Zhiyi LENG1,3,4, Jia YE1,3,4, Yujie XU1,2,3, Haisheng CHEN1,2,3()   

  1. 1.Institute of Engineering Thermophysics, Chinese Academy of Science, Beijing 100190, China
    2.Key Laboratory of Long-Duration and Large-Scale Energy Storage (Chinese Academy of Sciences), Beijing 100190, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
    4.Nanijing Institute of Future Energy System, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Nanjing 211135, Jiangsu, China
  • Received:2025-07-22 Revised:2025-08-01 Online:2025-08-28 Published:2025-08-18
  • Contact: Haisheng CHEN E-mail:weilu@iet.cn;chen_hs@iet.cn

摘要:

飞轮储能系统(FESS)凭借高功率密度、长寿命、快速响应和环境友好等特性,在电网调频、惯量支撑、高频调峰等领域具有突出优势。飞轮储能系统面临着低成本高可靠设计、高速永磁电机和磁悬浮控制稳定性、在线故障预测以及多机并联阵列控制等问题。本文通过对近期相关文献的探讨,综述了人工智能技术在飞轮储能系统设计优化、电机控制、磁悬浮控制、并网控制及故障诊断等环节的应用,着重介绍了神经网络等算法在复合材料转子建模分析、永磁同步电机多参数协同优化设计、永磁同步电机多工况效率优化与转速观测、电磁轴承控制器算法、并网鲁棒性与分布式协同控制、调频控制策略、轴承故障诊断与预警等技术方向中的应用,并讨论大模型结合、多技术协同优化等未来发展方向,期望为飞轮储能系统的智能化研究和发展提供参考。

关键词: 飞轮储能, 人工智能, 调频, 故障诊断

Abstract:

Flywheel energy storage systems (FESSs) offer outstanding advantages in grid frequency regulation, inertia support, high-frequency peak shaving, and other applications due to their high power density, long service life, rapid responses, and environmental friendliness. However, FESSs face challenges related to achieving cost effectiveness and design reliability, stability of high-speed permanent magnet motors, control of magnetic suspension control, online prediction of faults, and control of multimachine parallel arrays. This paper reviews recent literature on the application of artificial intelligence (AI) technologies in key areas of FESSs, including design optimization, motor control, magnetic suspension control, grid-connected control, and fault diagnosis. Particular focus is given to the use of algorithms such as neural networks in several technical domains: modeling and analysis of composite material rotors, multiparameter collaborative optimization of permanent magnet synchronous motors (PMSMs), efficiency optimization and speed estimation of PMSMs under varying conditions, electromagnetic bearing control algorithms, grid-connected system robustness and distributed collaborative control, frequency regulation strategies, and bearing fault diagnosis and early warning. Future development directions such as the integration of large AI models and multitechnology collaborative optimization are also discussed. These insights aim to support intelligent research and development in FESSs.

Key words: flywheel energy storage, artificial intelligence, frequency regulation, fault diagnosis

中图分类号: