• 储能科学与技术 •
任大勇1(), 陈湘源2, 蒋明哲1, 净远2, 王乾坤2, 王绍亮1, 冯子洋1(
)
收稿日期:
2025-08-08
修回日期:
2025-09-05
通讯作者:
冯子洋
E-mail:20090351@chnenergy.com.cn;20008353@chnenergy.com.cn
作者简介:
任大勇(1997—),男,硕士,助理级工程师,主要研究方向为液流电池储能技术,E-mail:20090351@chnenergy.com.cn;
基金资助:
Dayong REN1(), Xiangyuan CHEN2, Mingzhe JIANG1, Yuan JING2, Qiankun WANG2, Shaoliang WANG1, Ziyang FENG1(
)
Received:
2025-08-08
Revised:
2025-09-05
Contact:
Ziyang FENG
E-mail:20090351@chnenergy.com.cn;20008353@chnenergy.com.cn
摘要:
电极是全钒氧化还原液流电池(VRFB)的核心组件,是电解液中钒离子发生氧化还原反应的场所。理想的VRFB电极需要同时具备高电导率、大比表面积、优异的传质特性、良好的机械稳定性及化学稳定性,而传统的二维电极材料往往难以兼顾这些需求。三维结构电极通过其可设计的孔隙通道和增大的活性界面,能够协同增强电化学反应活性、优化传质路径并拓展活性位点,为解决上述瓶颈提供了有效途径。本文回顾了三维结构电极技术在提升VRFB性能中的应用与研究进展,重点讨论了泡沫基、生物质基及静电纺丝衍生三维电极的设计策略、制备方法及其构效关系,并剖析了金属基、碳基及复合三维电催化剂的界面构建机制。该综述有利于加深人们对三维电极“多级结构-功能协同”规律的理解,以期设计出更优的电极体系,提高VRFB的能量效率和循环寿命,降低成本,推进全钒氧化还原液流电池的产业化发展。
中图分类号:
任大勇, 陈湘源, 蒋明哲, 净远, 王乾坤, 王绍亮, 冯子洋. 全钒液流电池三维结构电极研究进展[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0723.
Dayong REN, Xiangyuan CHEN, Mingzhe JIANG, Yuan JING, Qiankun WANG, Shaoliang WANG, Ziyang FENG. Progress on 3D Structured Electrodes for Vanadium Redox Flow Batteries[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0723.
[1] | 贾志军, 宋士强, 王保国. 液流电池储能技术研究现状与展望[J]. 储能科学与技术, 2012, 1(1): 50-57. |
JIA Z J, SONG S Q, WANG B G. A review on the current status and prospects of flow battery energy storage technology[J]. Energy Storage Science and Technology, 2012, 1(1):50-57. | |
[2] | 张华民. 全钒液流电池的技术进展、不同储能时长系统的价格分析及展望[J]. 储能科学与技术, 2022, 11(09): 2772-2780. |
ZHANG H M. A review on the technological advances, price analysis for systems with different storage durations, and prospects of all-vanadium flow Batteries[J]. Energy Storage Science and Technology, 2022, 11(09):2772-2780. | |
[3] | 姚祯, 张琦, 王锐, 等. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(07): 2083-2091. |
YAO Z, ZHANG Q, WANG R, et al. A review on the application of biomass-derived carbon materials in electrodes of all-vanadium flow batteries[J]. Energy Storage Science and Technology, 2022, 11(07):2083-2091. | |
[4] | GENCTEN M, SAHIIN Y. A critical review on progress of the electrode materials of vanadium redox flow battery[J]. International Journal of Energy Research, 2020, 44(10): 7903-23. |
[5] | XU Z Y, JING M H, LIU J G, et al. Advanced dual-gradient carbon nanofibers/graphite felt composite electrode for the next-generation vanadium flow battery[J]. Journal of Materials Sciece & Technology, 2023, 136: 32-42. |
[6] | FORNER-CUENCA A, BRUSHETT F R. Engineering porous electrodes for next-generation redox flow batteries: Recent progress and opportunities[J]. Current Opinion in Electrochemistry, 2019, 18: 113-122. |
[7] | ZHANG K Y, YAN C W, TANG A. Unveiling electrode compression impact on vanadium flow battery from polarization perspective via a symmetric cell configuration[J]. Journal of Power Sources, 2020, 479: 228816. |
[8] | OH K, WON S, JU H. Numerical study of the effects of carbon felt electrode compression in all-vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 181: 13-23. |
[9] | HE Z, LV Y, ZHANG T, et al. Electrode materials for vanadium redox flow batteries: Intrinsic treatment and introducing catalyst[J]. Chemical Engineering Journal, 2022, 427: 131680. |
[10] | PARK SJ, HONG MJ, HA YJ, et al. Two-in-one strategy for optimizing chemical and structural properties of carbon felt electrodes for vanadium redox flow batteries[J]. Science and Technology of Advanced Materials, 2024, 25(1): 2327274. |
[11] | UONG LE T X, BECHELANY M, CRETIN M. Carbon felt basedelectrodes for energy and environmental applications: A review[J]. Carbon, 2017, 122: 564-591. |
[12] | NOH C, MOON S, CHUNG Y, et al. Chelating functional group attached to carbon nanotubes prepared for performance enhancement of vanadium redox flow battery[J]. Journal of Materials Chemistry A, 2017, 5(40): 21334-21342. |
[13] | SU J C, ZHAO Y, XI J Y, et al. Phosphorus-doped carbon nitride as powerful electrocatalyst for high-power vanadium flow battery[J]. Electrochimica Acta, 2018, 286: 22-28. |
[14] | JIANG H R, ZENG Y K, WU M C, et al. A uniformly distributed bismuth nanoparticle-modified carbon cloth electrode for vanadium redox flow batteries[J]. Applied Energy, 2019, 240: 226-235. |
[15] | ZHOU X, ZHANG X, MO L, et al. Densely populated bismuth nanosphere semi-embedded carbon felt for ultrahigh- rate and stable vanadium redox flow batteries[J]. Small, 2020, 16(37): 1907333. |
[16] | OPAR D O, NANKYA R, RAJ C J, et al. In-situ functionalization of binder-free three-dimensional boron-doped mesoporous graphene electrocatalyst as a high-performance electrode material for all-vanadium redox flow batteries[J]. Applied Materials Today, 2021, 22: 100950. |
[17] | DENG Q, HUANGYANG X Y, ZHANG X, et al. Edge rich multidimensional frame carbon as high performance electrode material for vanadium redox flow batteries[J]. Advanced Energy Materials, 2022, 12(8): 2103186. |
[18] | DENG Q, ZHOU W B, WANG H R, et al. Aspergillus niger derived wrinkle like carbon as superior electrode for advanced vanadium redox flow batteries[J]. Advanced Science, 2023, 10(18): 2300640. |
[19] | JIANG Y, WANG Y, CHENG G, et al. Multiple dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery[J]. Carbon Energy, 2024, 6(2): e537. |
[20] | GAUTAM R K, KAPOOR M, VERMA A. Tactical surface modification of a 3D graphite felt as an electrode of vanadium redox flow batteries with enhanced electrolyte utilization and fast reaction kinetics[J]. Energy & Fuels, 2020, 34(4): 5060-5071. |
[21] | ZHANG X, ZHANG D, XU Z, et al. A pioneering melamine foam-based electrode via facile synthesis as prospective direction for vanadium redox flow batteries[J]. Chemical Engineering Journal, 2022, 439: 135718. |
[22] | ZHANG X, ZHANG D, LIU L, et al. MOF-derived W/Zr bimetallic oxides@Carbon for comprehensively remedying melamine foam electrode defects in vanadium redox flow batteries[J]. Chemical Engineering Journal, 2023, 467: 143360. |
[23] | MCARDLE S, DANG Q A, HOLLAND D, et al. Assessing the Feasibility of Implementing Porous Carbon Foam Electrodes Derived from Coal in Redox Flow Batteries[J]. Journal of The Electrochemical Society, 2024, 171(2): 020513. |
[24] | KABTAMU D M, CHANG Y C, LIN G Y, et al. Three-dimensional annealed WO3 nanowire/graphene foam as an electrocatalytic material for all vanadium redox flow batteries[J]. Sustainable Energy & Fuels, 2017, 1(10): 2091-2100. |
[25] | MUSTAFA I, SUSANTYOKO R, WU C H, et al. Nanoscopic and Macro-porous carbon nano-foam electrodes with improved Mass transport for Vanadium Redox flow Batteries[J]. Scientific reports, 2019, 9(1): 17655. |
[26] | WAN C T C, LóPEZ BARREIRO D, FORNER-CUENCA A, et al. Exploration of biomass-derived activated carbons for use in vanadium redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9472-9482. |
[27] | LEE M E, JANG D, LEE S, et al. Silk Protein-Derived carbon fabric as an electrode with high Electro-Catalytic activity for All-Vanadium redox flow batteries[J]. Applied Surface Science, 2021, 567: 150810. |
[28] | ZHANG T, ZHU Y, LV Y, et al. N-doped biomass carbon materials as superior catalyst to improve electrochemical performance of vanadium redox flow battery[J]. Ionics, 2021, 27: 4771-4781. |
[29] | HU Z Y, MIAO Z Q, XU Z, et al. Carbon felt electrode modified by lotus seed shells for high-performance vanadium redox flow battery[J]. Chemical Engineering Journal, 2022, 450: 138377. |
[30] | ZHOU A, SHAO X, LI D, et al. Heteroatom co-doped biomass carbon modified electrodes for all-vanadium redox flow batteries with ultra-low decay rate of energy efficiency[J]. Journal of Power Sources, 2024, 591: 233890. |
[31] | XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical reviews, 2019, 119(8): 5298-5415. |
[32] | SUN J, WU M C, FAN X Z, et al. Aligned microfibers interweaved with highly porous carbon nanofibers: A Novel electrode for high-power vanadium redox flow batteries[J]. Energy Storage Materials, 2021, 43: 30-41. |
[33] | FU W, MA Q, CHEN Z, et al. A gradient electrospinning electrode structure both in the in/through-plane directions for non-aqueous iron-vanadium redox flow battery[J]. Electrochimica Acta, 2024: 144549. |
[34] | ZHANG Y, ZHANG X, XU Z, et al. An advanced large-porosity porous channel structure electrode for vanadium redox flow batteries[J]. Journal of Power Sources, 2022, 552: 232241. |
[35] | RIBADENEYRA M C, GROGAN L, AU H, et al. Lignin-derived electrospun freestanding carbons as alternative electrodes for redox flow batteries[J]. Carbon, 2020, 157: 847-856. |
[36] | JING M H, ZHANG A, LIU N, et al. Asymmetric batteries based on customized positive and negative electrodes-an effective strategy to further improve the performance of vanadium redox flow batteries[J]. Electrochimica Acta, 2024, 473: 143478. |
[37] | DEY G, SAIFI S, SHARMA H, et al. Carbon nanofibers coated with MOF-derived carbon nanostructures for vanadium redox flow batteries with enhanced electrochemical activity and power density[J]. ACS Applied Nano Materials, 2023, 6(10): 8192-8201. |
[38] | CHENG X, WANG Z, XIA L G, et al. MOF-derived nitrogen, sulfur, cobalt, and copper co-doped graphite felt for high-efficiency vanadium redox flow battery electrodes[J]. Journal of Colloid and Interface Science, 2025, 687: 1-13. |
[39] | WEI L, XIONG C, JIANG H R, et al. Highly catalytic hollow Ti3C2Tx MXene spheres decorated graphite felt electrode for vanadium redox flow batteries[J]. Energy Storage Materials, 2020, 25: 885-892. |
[40] | MENG X, PENG Q, PENG L, et al. In situ growth of covalent organic framework on graphene oxide nanosheet enable proton-selective transport in flow battery membrane[J]. Journal of Power Sources, 2024, 609: 234690. |
[41] | TAN Y, ZHU W, ZHANG Z, et al. Electronic tuning of confined sub-nanometer cobalt oxide clusters boosting oxygen catalysis and rechargeable Zn air batteries[J]. Nano Energy, 2021, 83: 105813. |
[42] | YAN H, ZHANG N, WAN D, et al. Highly Efficient CeO2-Supported Noble-Metal Catalysts: From Single Atoms to Nanoclusters[J]. Chem. Catalysis, 2022, 2(7): 1594-1623. |
[43] | WANG L, LI S, LI D, et al. 3D flower-like molybdenum disulfide modified graphite felt as a positive material for vanadium redox flow batteries[J]. RSC advances, 2020, 10(29): 17235-17246. |
[44] | YOU D, LOU J, LI X, et al. Investigation of advanced catalytic effect of Co3O4 nanosheets modified carbon felts as vanadium flow battery electrodes[J]. Journal of Power Sources, 2021, 494: 229775. |
[45] | ZHANG X, VALENCIA A, LI W, et al. Decoupling Activation and Transport by Electron Regulated Atomic Bi Harnessed Surface to Pore Interface for Vanadium Redox Flow Battery[J]. Advanced Materials, 2024, 36(6): 2305415. |
[46] | MAO H, SHEN Y, ZHANG Q, et al. Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon[J]. Carbon, 2016, 96: 75-82. |
[47] | HE Z, DAI L, LIU S, et al. Mn3O4 anchored on carbon nanotubes as an electrode reaction catalyst of V(IV)/V(V) couple for vanadium redox flow batteries[J]. Electrochimica Acta, 2015, 176: 1434-1440. |
[48] | JIANG Q C, LI J, YANG Y J, et al. Ultrafine SnO2 in situ modified graphite felt derived from metal-organic framework as a superior electrode for vanadium redox flow battery[J]. Rare Metals, 2023, 42(4): 1214-1226. |
[49] | LI Q, BAI A, XUE Z, et al. Nitrogen and Sulfur Co-Doped Graphene Composite Electrode with High Electrocatalytic Activity for Vanadium Redox Flow Battery Application[J]. Electrochim Acta, 2020, 362: 137223. |
[50] | OPAR D O, NANKYA R, LEE J, et al. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Applied Surface Science, 2020, 531: 147391. |
[51] | OPAR D O, NANKYA R, RAJ C J, et al. In-situ functionalization of binder-free three-dimensional boron-doped mesoporous graphene electrocatalyst as a high-performance electrode material for all-vanadium redox flow batteries[J]. Applied Materials Today, 2021, 22: 100950. |
[52] | LI W, ZHANG Z, TANG Y, et al. Graphene nanowall decorated carbon felt with excellent electrochemical activity toward VO2+/VO2+ couple for all vanadium redox flow battery[J]. Advanced science, 2016, 3(4): 1500276. |
[53] | JO J, PAICK J, KIM J S, et al. High electrocatalytic activities of electrochemically exfoliated graphene-oxide deposited carbon paper electrodes for vanadium redox flow batteries[J]. Journal of Energy Storage, 2024, 90: 111927. |
[1] | 刘宏辉, 李冬辉, 钱其峰, 肖凌超, 熊磊, 陈仲国. 氮化钒基电极材料的制备及其在超级电容器中的应用进展[J]. 储能科学与技术, 2025, 14(8): 3110-3121. |
[2] | 班宵汉, 周明霞, 胡洪瑞, 刘富亮, 马东伟, 石斌, 张校刚. 基于纳/微结构钴酸锂颗粒级配正极的超高功率锂离子电池[J]. 储能科学与技术, 2025, 14(8): 2950-2959. |
[3] | 刘佳辉, 卞伟翔, 李大伟. 锂电池石墨复合电极力-电耦合性能原位测量分析[J]. 储能科学与技术, 2025, 14(6): 2240-2247. |
[4] | 阮晶晶, 巫湘坤, 李勇慧, 赵冲冲, 李珅珅, 王童飞, 梁圣杰, 高桂红. 低成本干法石墨厚电极的制备与性能研究[J]. 储能科学与技术, 2025, 14(6): 2248-2255. |
[5] | 段永龙, 滑夏, 韩子娇, 谢冰, 胡姝博, 李爱魁. 全钒液流电池容量衰减与抑制技术研究进展[J]. 储能科学与技术, 2025, 14(6): 2540-2554. |
[6] | 张红, 李金中, 李鑫, 张媛. 计及SOH的全钒液流电池并联控制策略[J]. 储能科学与技术, 2025, 14(6): 2442-2450. |
[7] | 刘德帅, 朱慧琴, 孙睿浩, 李蒙, 巩文豪, 李晓辉, 钱伟伟. 双添加剂协同提升钠离子电池循环稳定性[J]. 储能科学与技术, 2025, 14(5): 1858-1865. |
[8] | 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 邸会芳, 王振兵. 干法电极技术在超级电容器和锂离子电池中的研究进展[J]. 储能科学与技术, 2025, 14(4): 1445-1460. |
[9] | 史小虎, 黄怡馨, 邹涛, 袁依婷. 星形交联剂交联的磺化聚苯并咪唑膜的制备及其在全钒液流电池中的应用[J]. 储能科学与技术, 2025, 14(4): 1377-1385. |
[10] | 叶涛, 王怡君, 唐子龙, 潘国梁. 全钒液流电池电解液容量衰减及草酸恢复研究[J]. 储能科学与技术, 2025, 14(3): 1177-1186. |
[11] | 袁程, 沈迁, 张瑞文, 张世明. 快速微波合成铂铜合金作为高效氧还原电催化剂[J]. 储能科学与技术, 2025, 14(3): 1133-1140. |
[12] | 肖子信, 张泓, 徐林. 纳米线调控固态电池离子输运与界面[J]. 储能科学与技术, 2025, 14(3): 1026-1039. |
[13] | 李跃林, 刘祉妤, 郭森, 刘晓君, 张蓬亮, 王程程, 梁原, 王锐. 全钒液流电池的电极结构研究进展[J]. 储能科学与技术, 2025, 14(2): 601-612. |
[14] | 王泓, 张开悦. 全钒液流电池碳毡电极的热处理活化研究[J]. 储能科学与技术, 2025, 14(2): 488-496. |
[15] | 刘通, 杨瑰婷, 毕辉, 梅悦旎, 刘硕, 宫勇吉, 罗文雷. 高能量密度与高功率密度兼顾型锂离子电池研究现状与展望[J]. 储能科学与技术, 2025, 14(1): 54-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||