• 储能科学与技术 •
黄小荣1(), 刘健达1, 芦大伟1, 易斌2, 徐云1, 秦啸天2
收稿日期:
2025-08-08
修回日期:
2025-09-18
通讯作者:
黄小荣
E-mail:706360854@qq.com
作者简介:
黄小荣(1985—),男,硕士研究生,高级工程师,研究方向为储能与低压直流,E-mail:706360854@qq.com;
基金资助:
Xiaorong HUANG1(), Jianda LIU1, Dawei LU1, Bin YI2, Yun XU1, Xiaotian QIN2
Received:
2025-08-08
Revised:
2025-09-18
Contact:
Xiaorong HUANG
E-mail:706360854@qq.com
摘要:
富镍三元正极材料(NCM/NCA)因其兼具高能量密度与优异倍率性能,在电动汽车与储能领域受到广泛应用。随着镍含量的提升,材料可逆比容量显著提高,但高镍化同时引发材料结构与化学稳定性下降,导致电池循环寿命缩短,并增大安全隐患。本文系统梳理了富镍三元正极材料的主要失效机理,并分析其对电池性能的影响规律。其中,Li+/Ni2+阳离子混排引起部分锂离子位点失活,降低材料可逆容量;材料高活性表面导致其在存储及充放电循环中易发生表面/界面副反应,加速材料表面不可逆相变及电解液分解;同时,正极颗粒在连续充放电过程中因各向异性应力积累而产生微裂纹,导致结构坍塌,并增加电解液与正极的接触面积,加剧界面副反应。针对上述问题,近年来提出了多种改性策略,包括构建氧化物或有机物涂层以提升界面稳定性,元素掺杂以优化结构稳定性和离子扩散动力学,浓度梯度设计以兼顾高比容量与界面稳定性,以及单晶化以缓解颗粒裂纹和界面副反应。最后,本文对富镍三元正极材料未来的研究方向进行展望,为下一代高能量密度锂离子电池研究提供参考。
中图分类号:
黄小荣, 刘健达, 芦大伟, 易斌, 徐云, 秦啸天. 富镍三元正极材料的失效机理及改性策略[J]. 储能科学与技术, doi: 10.19799/j.cnki.2095-4239.2025.0725.
Xiaorong HUANG, Jianda LIU, Dawei LU, Bin YI, Yun XU, Xiaotian QIN. The failure mechanisms of nickel-rich ternary cathode materials and modification strategies[J]. Energy Storage Science and Technology, doi: 10.19799/j.cnki.2095-4239.2025.0725.
[1] | 汪惟源,朱寰,高正平,等;大规模低成本电化学储能技术及应用研究进展[J]. 现代化工, 2020, 40(10): 80-85. |
[2] | 朱晟,彭怡婷,闵宇霖,等;电化学储能材料及储能技术研究进展[J]. 化工进展, 2021, 40(09): 4837-4852. |
[3] | E., M. B., E., T. K., NURIA, T. A perspective on the sustainability of cathode materials used in lithium-ion batteries[J]. Advanced Energy Materials, 2021, 11(39): 2102028. |
[4] | ANDERSSON, A. S., THOMAS, J. O. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources, 2001, 97: 498-502. |
[5] | YAMADA, A., CHUNG, S. C., HINOKUMA, K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): A224. |
[6] | XU, S., LU, L., JIANG, X., et al. Y-doped Li3V2(PO4)3/C as cathode material for lithium-ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(3): 279-287. |
[7] | BENEDEK, R., THACKERAY, M. M. Reaction energy for LiMn2O4 spinel dissolution in acid[J]. Electrochemical and Solid-State Letters, 2006, 9(6): A265-A267. |
[8] | WANG, C., LU, S., KAN, S., et al. Enhanced capacity retention of Co and Li doubly doped LiMn2O4[J]. Journal of Power Sources, 2009, 189(1): 607-610. |
[9] | DING, Y., MU, D., WU, B., et al. Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles[J]. Applied Energy, 2017, 195: 586-599. |
[10] | NATALIAVORONINA, YANG-KOOKSUN, SEUNG-TAEKMYUNG Co-free layered cathode materials for high energy density lithium-ion batteries[J]. ACS Energy Letters, 2020, 5(6): 1814-1824. |
[11] | JIANMING, Z., MENG, G., ARDA, G., et al. Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution[J]. Nano Letters, 2014, 14(5): 2628-3265. |
[12] | PARK, N.-Y., PARK, K.-J., YOON, D. R., et al. Ni-rich NCA cathode with concentration gradient for lithium-ion batteries: Li[Ni0.865Co0.120Al0.015]O2[J]. ECS Meeting Abstracts, 2019, 3(2): 134. |
[13] | NOH, H.-J., YOUN, S., YOON, C. S., et al. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 ( x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources, 2013, 233: 121-130. |
[14] | ZHU, B., YU, Z., MENG, L., et al. The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: a review[J]. Ionics, 2021, 27(7): 1-36. |
[15] | JO, M., NOH, M., OH, P., et al. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(13): 1301583. |
[16] | XU, B., QIAN, D., WANG, Z., et al. Recent progress in cathode materials research for advanced lithium ion batteries[J]. Materials Science & Engineering R, 2012, 73(5-6): 51-65. |
[17] | SHEN, J., ZHANG, B., HAO, C., et al. Understanding the failure mechanism towards developing high-voltage single-crystal Ni-rich Co-free cathodes[J]. Green Energy & Environment, 2024, 9(06): 1045-1057. |
[18] | WONTAE, L., SANGYOON, L., EUNKANG, L., et al. Destabilization of the surface structure of Ni-rich layered materials by water-washing process[J]. Energy Storage Materials, 2022, 44: 441-451. |
[19] | XIANG, L., GUILIANG, X., LIANG, Y., et al. Probing the thermal-driven structural and chemical degradation of Ni-rich layered cathodes by Co/Mn exchange[J]. Journal of the American Chemical Society, 2020, 142(46): 19745-19753. |
[20] | WEN, L., PILGUN, O., XIEN, L., et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie, 2015, 54(15): 4440-4457. |
[21] | SHOUYI, Y., WENTAO, D., JUN, C., et al. Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries[J]. Nano Energy, 2021, 83: 105854. |
[22] | M., T. M., KHALIL, A. Layered Li–Ni–Mn–Co oxide cathodes[J]. Nature Energy, 2021, 6(9): 933. |
[23] | DANIEL, S., CHRISTOPH, E., AURELIE, G., et al. Operando monitoring of early Ni-mediated surface reconstruction in layered lithiated Ni-Co-Mn oxides[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13481-13486. |
[24] | TAKELE, G. F., ABAYNEH, K. M., WODAJO, S. M., et al. Identifying surface degradation, mechanical failure, and thermal instability phenomena of high energy density Ni-rich NCM cathode materials for lithium-ion batteries: a review[J]. RSC Advances, 2022, 12(10): 5891-5909. |
[25] | YANG, J., LIANG, X., RYU, H.-H., et al. Ni-rich layered cathodes for lithium-ion batteries: from challenges to the future[J]. Energy Storage Materials, 2023, 63: 102969. |
[26] | LEA, D. B., O., K. A., HOLGER, G., et al. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(47): 26163-26171. |
[27] | 冯辉,陈俊超,郭东轩,等;高镍三元正极材料的失效机理及其改性策略[J]. 电源技术, 2025, 49(02): 237-249. |
[28] | LIANG, L., ZHANG, W., ZHAO, F., et al. Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: fundamental mechanisms and remedying strategies[J]. Advanced Materials Interfaces, 2020, 7(3): 1901749. |
[29] | HYUCK, K. U., TAE, P. G., PATRICK, C., et al. Cation ordered Ni-rich layered cathode for ultra-long battery life[J]. Energy & Environmental Science, 2021, 14(3): 1573-1583. |
[30] | ZHENG, J., YE, Y., LIU, T., et al. Ni/Li disordering in layered transition metal oxide: electrochemical impact, origin, and control[J]. Accounts of Chemical Research, 2019, 52(8): 2201-2209. |
[31] | KIM, Y., KIM, D., KANG, S. Experimental and first-principles thermodynamic study of the formation and effects of vacancies in layered lithium nickel cobalt oxides[J]. Chemistry of Materials, 2011, 23(24): 5388-5397. |
[32] | RADIN, M. D., HY, S., SINA, M., et al. Narrowing the gap between theoretical and practical capacities in Li-iIon layered oxide cathode materials[J]. Advanced Energy Materials, 2017, 7(20): 1602888. |
[33] | MAGDALENA, Z., HUBERT, R., KAROLINA, D., et al. Suppressing Ni/Li disordering in LiNi0.6Mn0.2Co0.2O2 cathode material for Li-ion batteries by rare earth element doping[J]. Energy Reports, 2022, 8: 3995-4005. |
[34] | HANG, L., LI, W., YOUZHI, S., et al. Understanding the insight mechanism of chemical-mechanical degradation of layered Co-free Ni-rich cathode materials: a review[J]. Small, 2023, 19(32): e2302208-e2302208. |
[35] | JIAXIN, Z., GAOFENG, T., CHAO, X., et al. Role of superexchange interaction on tuning of Ni/Li disordering in layered Li(NixMnyCoz)O2[J]. The Journal of Physical Chemistry Letters, 2017, 8(22): 5537-5542. |
[36] | CHO, D.-H., JO, C.-H., CHO, W., et al. Effect of residual lithium compounds on layer Ni-rich Li[Ni0.7Mn0.3]O2[J]. Journal of the Electrochemical Society, 2014, 161(6): A920. |
[37] | PARK, K., CHOI, B. Requirement of high lithium content in Ni-rich layered oxide material for Li ion batteries[J]. Journal of Alloys and Compounds, 2018, 766: 470-476. |
[38] | 栗志展,秦金磊,梁嘉宁,等;高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(09): 2900-2920. |
[39] | JUNG, R., MORASCH, R., KARAYAYLALI, P., et al. Effect of ambient storage on the degradation of Ni-rich positive electrode materials (NMC811) for Li-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(2): A132. |
[40] | PENGPENG, S., FANGHUI, D., QUN, Z., et al. Efficient preservation of surface state of LiNi0.82Co0.15Al0.03O2 through assembly of hydride terminated polydimethylsiloxane[J]. Journal of Power Sources, 2021, 495: 229761. |
[41] | ROSS, G. J., WATTS, J. F., HILL, M. P., et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment: the degradation mechanism[J]. Polymer, 2000, 41(5): 1685-1696. |
[42] | HATSUKADE, T., SCHIELE, A., HARTMANN, P., et al. Origin of carbon dioxide evolved during cycling of nickel-rich layered NCM cathodes[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38892-38899. |
[43] | CUI, Z., MANTHIRAM, A. Thermal stability and outgassing behaviors of high-nickel cathodes in lithium-ion batteries[J]. Angewandte Chemie International Edition, 2023, 62(43): e202307243. |
[44] | RENFREW, S. E., KAUFMAN, L. A., MCCLOSKEY, B. D. Altering surface contaminants and defects influences the first-cycle outgassing and irreversible transformations of LiNi0.6Mn0.2Co0.2O2[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34913-34921. |
[45] | RUIQI, N., KAI, Y., KUN, Z., et al. A scalable snowballing strategy to construct uniform rGO-wrapped LiNi0.8Co0.1Mn0.1O2 with enhanced processability and electrochemical performance[J]. Applied Surface Science, 2021, 542: 148663. |
[46] | GAO, S., ZHAN, X., CHENG, Y.-T. Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries[J]. Journal of Power Sources, 2019, 410: 45-52. |
[47] | MUDIT, D., BORIS, M., FLORIAN, S., et al. Origin of structural degradation during cycling and low thermal stability of Ni-rich layered transition metal-based electrode materials[J]. The Journal of Physical Chemistry C, 2017, 121(41): 22628-22636. |
[48] | HE, J., YANG, M., WANG, J., et al. Ni-rich cathode materials for high-performance Li-ion batteries: challenges, progress and perspectives[J]. ChemNanoMat, 2023, 9(7): e202300148. |
[49] | HYUN, S. H., ARUMUGAM, M. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries[J]. Chemistry of Materials, 2017, 29(19): 8486-8493. |
[50] | E.RENFREW, S., D.MCCLOSKEY, B. Quantification of surface oxygen depletion and solid carbonate evolution on the first cycle of LiNi0.6Mn0.2Co0.2O2 electrodes[J]. ACS Applied Energy Materials, 2019, 2(5): 3762-3772. |
[51] | ZHENZHEN, L., TAO, L., QIUNING, L., et al. Sequential control over thiol click chemistry by a reversibly photoactivated thiol mechanism of spirothiopyran[J]. Angewandte Chemie, 2015, 54(1): 174-178. |
[52] | ZHANG, S. S. Problems and their origins of Ni-rich layered oxide cathode materials[J]. Energy Storage Materials, 2020, 24: 247-254. |
[53] | LI, J., DOWNIE, L. E., MA, L., et al. Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 cathode material for lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(7): A1401. |
[54] | LIN, Q., GUAN, W., MENG, J., et al. A new insight into continuous performance decay mechanism of Ni-rich layered oxide cathode for high energy lithium ion batteries[J]. Nano Energy, 2018, 54: 313-321. |
[55] | YANG, Y., PINAR, K., YU, K., et al. Coupled LiPF6 decomposition and carbonate dehydrogenation enhanced by highly covalent metal oxides in high-energy Li-ion batteries[J]. The Journal of Physical Chemistry C, 2018, 122(48): 27368-27382. |
[56] | JUNG, R., METZGER, M., MAGLIA, F., et al. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li[J]. Journal of the Electrochemical Society, 2017, 164(7): A1361-A1377. |
[57] | 刘博宇,庞青,王腾飞,等;高镍三元正极材料LiNi0.8Co0.1Mn0.1O2在高压下的研究进展[J]. 储能科学与技术, 2024, 13(11): 3784-3795. |
[58] | BAK, S.-M., HU, E., ZHOU, Y., et al. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22594-22601. |
[59] | JUNG, S.-K., GWON, H., HONG, J., et al. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries[J]. Advanced Energy Materials, 2014, 4(1): 1300787. |
[60] | ASL, H. Y., MANTHIRAM, A. Reining in dissolved transition-metal ions[J]. Science, 2020, 369(6500): 140-141. |
[61] | FAENZA, N. V., LEBENS-HIGGINS, Z. W., MUKHERJEE, P., et al. Electrolyte-induced surface transformation and transition-metal dissolution of fully delithiated LiNi0.8Co0.15Al0.05O2[J]. Langmuir, 2017, 33(37): 9333-9353. |
[62] | JUNG, R., LINSENMANN, F., THOMAS, R., et al. Nickel, manganese, and cobalt dissolution from Ni-rich NMC and their effects on NMC622-graphite cells[J]. Journal of the Electrochemical Society, 2019, 166(2): A378. |
[63] | KLEIN, S., BäRMANN, P., FROMM, O., et al. Prospects and limitations of single-crystal cathode materials to overcome cross-talk phenomena in high-voltage lithium ion cells[J]. Journal of Materials Chemistry A, 2021, 9(12): 7546-7555. |
[64] | QIU, L., SONG, Y., ZHANG, M., et al. Structural reconstruction driven by oxygen vacancies in layered Ni-rich cathodes[J]. Advanced Energy Materials, 2022, 12(19): 2200022. |
[65] | KYOUNGMIN, M., EUNSEOG, C. Intrinsic origin of intra-granular cracking in Ni-rich layered oxide cathode materials[J]. Physical chemistry chemical physics : PCCP, 2018, 20(14): 9045-9052. |
[66] | TAN, Z., XU, F., WU, T., et al. Electrochemical-mechanical coupling failure of Ni-rich cathodes: Failure mechanisms and remedying strategies[J]. Energy Storage Materials, 2025, 74: 103949. |
[67] | KIM, T., ONO, L. K., FLECK, N., et al. Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes[J]. Journal of Materials Chemistry A, 2018, 6(29): 14449-14463. |
[68] | HAIFENG, Y., YUEQIANG, C., LONG, C., et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries[J]. Nature Communications, 2021, 12(1): 4564-4564. |
[69] | LIN, Q., GUAN, W., ZHOU, J., et al. Ni-Li anti-site defect induced intragranular cracking in Ni-rich layer-structured cathode[J]. Nano Energy, 2020, 76: 105021. |
[70] | ZHANG, S. S. Understanding of performance degradation of LiNi0.80Co0.10Mn0.10O2 cathode material operating at high potentials[J]. Journal of Energy Chemistry, 2020, 41: 135-141. |
[71] | DE BIASI, L., SCHIELE, A., ROCA-AYATS, M., et al. Phase transformation behavior and stability of LiNiO2 cathode material for Li-ion batteries obtained from in situ gas analysis and operando X-ray diffraction[J]. ChemSusChem, 2019, 12(10): 2240-2250. |
[72] | O., K. A., ALEXANDER, S., JIN, X., et al. Anisotropic lattice strain and mechanical degradation of high- and low-nickel NCM cathode materials for Li-ion batteries[J]. The Journal of Physical Chemistry C, 2017, 121(6): 3286-3294. |
[73] | NAM, G. W., PARK, N., PARK, K., et al. Capacity fading of Ni-rich NCA cathodes: effect of microcracking extent[J]. ACS Energy Letters, 2019, 4(12): 2995-3001. |
[74] | CHAE, B. G., PARK, S. Y., SONG, J. H., et al. Evolution and expansion of Li concentration gradient during charge–discharge cycling[J]. Nature Communications, 2021, 12(1): 3814. |
[75] | RYU, H.-H., NAMKOONG, B., KIM, J.-H., et al. Capacity fading mechanisms in Ni-rich single-crystal NCM cathodes[J]. ACS Energy Letters, 2021, 6(8): 2726-2734. |
[76] | 胡文豪,赵晨曦,孙卓尔,等;高镍/碳硅三元锂离子电池循环老化机理研究[J]. 储能科学与技术, 2024, 13(10): 3504-3514. |
[77] | LI, Y.-C., XIANG, W., XIAO, Y., et al. Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance[J]. Journal of Power Sources, 2019, 423: 144-151. |
[78] | RAN, Q., ZHAO, H., HU, Y., et al. Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage[J]. ACS Applied Materials & Interfaces, 2020, 12(8): 9268-9276. |
[79] | GAN, Q., QIN, N., WANG, Z., et al. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes[J]. ACS Applied Energy Materials, 2020, 3(8): 7445-7455. |
[80] | ZHAN, X., GAO, S., CHENG, Y.-T. Influence of annealing atmosphere on Li2ZrO3-coated LiNi0.6Co0.2Mn0.2O2 and its high-voltage cycling performance[J]. Electrochimica Acta, 2019, 300: 36-44. |
[81] | LEE, Y., SON, I. H., PARK, K. Exploring the graphene effect of graphene ball coating on Ni-rich layered oxide materials for high-performance Li-ion batteries[J]. Journal of Power Sources, 2024, 605: 234450. |
[82] | CHEN, Z., QIN, Y., AMINE, K., et al. Role of surface coating on cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20: 7606-7612. |
[83] | SHIM, H., KIM, H.-S., JUNG, J. Y., et al. Overcoming the interfacial challenges of Ni-rich layered oxide cathodes for all-solid-state batteries through an ultrathin and amorphous Al2O3 coating[J]. Journal of Materials Chemistry A, 2024, 12(43): 29826-29832. |
[84] | LI, Y., LI, X., HU, J., et al. ZnO interface modified LiNi0.6Co0.2Mn0.2O2 toward boosting lithium storage[J]. Energy & Environmental Materials, 2020, 3(4): 522-528. |
[85] | XIONG, X., WANG, Z., YIN, X., et al. A modified LiF coating process to enhance the electrochemical performance characteristics of LiNi0.8Co0.1Mn0.1O2 cathode materials[J]. Materials Letters, 2013, 110: 4-9. |
[86] | WEI, K., LI, J., HUANG, W., et al. An ultrathin LiF film coated on NCM electrode surface via magnetron sputtering for optimized structure stability and cycling performance[J]. Solid State Ionics, 2024, 405: 116436. |
[87] | KIM, H. B., PARK, B. C., MYUNG, S. T., et al. Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells[J]. Journal of Power Sources, 2008, 179(1): 347-350. |
[88] | DAI, S., YAN, G., WANG, L., et al. Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating[J]. Journal of Electroanalytical Chemistry, 2019, 847: 113197. |
[89] | CHU, Y., MU, Y., ZOU, L., et al. Thermodynamically Stable Dual-Modified LiF&FeF3 layer Empowering Ni-Rich Cathodes with Superior Cyclabilities[J]. Advanced Materials, 2023, 35(21): 2212308. |
[90] | WU, K., LI, Z., CHEN, X. Designing a corrosion inhibiting layer to enhance cycling stability of 4.7 V Ni-rich cathode[J]. Advanced Functional Materials, 2024, 34(27): 2315327. |
[91] | BYEON, Y. S., LEE, H. B., HONG, Y., et al. Cation-deficient LixWO3 surface coating on Ni-rich cathodes materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2025, 17(6): 9322-9331. |
[92] | HE, X., LUO, H., YONG, K., et al. A stable dual LiAlO2/Li2SiO3 coating LiNi0.8Co0.1Mn0.1O2 cathode towards ultra-long-life and wide-temperature lithium-ion battery[J]. Journal of Energy Storage, 2023, 70: 107872. |
[93] | GUAN, P., ZHOU, L., YU, Z., et al. Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 220-235. |
[94] | YANG, H., GAO, R.-M., ZHANG, X.-D., et al. Building a self-adaptive protective layer on Ni-rich layered cathodes to enhance the cycle stability of lithium-ion batteries[J]. Advanced Materials, 2022, 34(38): 2204835. |
[95] | LIU, Q., LIU, Y.-T., ZHAO, C., et al. Conformal PEDOT coating enables ultra-high-voltage and high-temperature operation for single-crystal Ni-rich cathodes[J]. ACS Nano, 2022, 16(9): 14527-14538. |
[96] | LI, Z.-W., LIN, F., ZHANG, X.-D., et al. Stress-relieving protective elastomeric interphase for stable Ni-rich cathodes[J]. Advanced Functional Materials, 2025, 35(6): 2415035. |
[97] | ZHENG, J., JIANG, H., XU, X., et al. In situ partial-cyclized polymerized acrylonitrile-coated NCM811 cathode for high-temperature ≥100oC stable solid-state lithium metal batteries[J]. Nano-Micro Letters, 2025, 17(1): 195. |
[98] | JIAN, J., XU, X., PAN, X., et al. Na+ orientates Jahn-Teller effect to tune Li+ diffusion pathway and kinetics for single-crystal Ni-rich LiNixCoyMn1-x-yO2 cathode materials[J]. Chemical Engineering Journal, 2024, 496: 154344. |
[99] | WANG, J., LIU, C., XU, G., et al. Strengthened the structural stability of in-situ F-doping Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 438: 135537. |
[100] | QIU, L., XIANG, W., TIAN, W., et al. Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery[J]. Nano Energy, 2019, 63: 103818. |
[101] | ZHAO, J., WANG, Z., WANG, J., et al. Anchoring K+ in Li+ sites of LiNi0.8Co0.15Al0.05O2 cathode material to suppress its structural degradation during high-voltage cycling[J]. Energy Technology, 2018, 6(12): 2358-2366. |
[102] | DAI, J., HE, Z., LI, X., et al. Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2[J]. Chinese Chemical Letters, 2025, 36(6): 110063. |
[103] | ZHANG, H., WANG, X., NAVEED, A., et al. Comparison of structural and electrochemical properties of LiNi0.8Co0.15Al0.05O2 with Li site doping by different cations[J]. Applied Surface Science, 2022, 599: 153933. |
[104] | YI, Z., LIU, C., MIAO, C., et al. In-situ Ti4+-doped modification of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials for high-energy lithium-ion batteries[J]. Journal of Colloid and Interface Science, 2025, 677: 91-100. |
[105] | LEE, S.-B., PARK, N.-Y., PARK, G.-T., et al. Doping strategy in developing Ni-rich cathodes for high-performance lithium-ion batteries[J]. ACS Energy Letters, 2024, 9(2): 740-747. |
[106] | WU, R., ZHAO, S., LIAO, S., et al. Bulk doping of tungsten improves the structure stability and electrochemical performance of layered Ni-rich material[J]. Journal of Power Sources, 2024, 606: 234584. |
[107] | PARK, K.-J., JUNG, H.-G., KUO, L.-Y., et al. Improved cycling stability of Li[Ni0.90Co0.05Mn0.05]O2 through mMicrostructure modification by boron doping for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(25): 1801202. |
[108] | KIM, U.-H., KUO, L.-Y., KAGHAZCHI, P., et al. Quaternary layered Ni-rich NCMA cathode for lithium-ion batteries[J]. ACS Energy Letters, 2019, 4(2): 576-582. |
[109] | SUN, H. H., KIM, U.-H., PARK, J.-H., et al. Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries[J]. Nature Communications, 2021, 12(1): 6552. |
[110] | OH, M., HWANG, K., LIM, J., et al. Gradient doping of phosphate in Ni-rich LiNi0.6Co0.2Mn0.2O2 (NCM) and P0.02-nrNCM: a Li-ion battery cathode with enhanced electrochemical performance at high cut-off voltage[J]. Journal of Alloys and Compounds, 2025, 1035: 181491. |
[111] | GUAN, S., TAO, L., TANG, P., et al. Regulating interfacial chemistry and kinetic behaviors of F/Mo co-doping Ni-rich layered oxide cathode for long-cycling lithium-ion batteries over -20 oC-60 oC[J]. Journal of Energy Chemistry, 2024, 94: 449-457. |
[112] | ZHOU, Y., ZHANG, H., WANG, Y., et al. Relieving stress concentration through anion-cation codoping toward highly stable nickel-rich cathode[J]. ACS Nano, 2023, 17(20): 20621-20633. |
[113] | SUN, Y.-K., MYUNG, S.-T., KIM, M.-H., et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries[J]. Journal of the American Chemical Society, 2005, 127(38): 13411-13418. |
[114] | YERKINBEKOVA, Y., KUMAROV, A., TATYKAYEV, B., et al. Ni-rich cathode materials with concentration gradients for high-energy and safe lithium-ion batteries: a comprehensive review[J]. Journal of Power Sources, 2025, 626: 235686. |
[115] | LIM, B., YOON, S., PARK, K., et al. Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries[J]. Advanced Functional Materials, 2015, 25(29): 4673-4680. |
[116] | CHEN, H., YUAN, H., DAI, Z., et al. Surface gradient Ni-rich cathode for Li-ion batteries[J]. Advanced Materials, 2024, 36(33): 2401052. |
[117] | YANG-KOOK, S., ZONGHAI, C., HYUNG-JOO, N., et al. Nanostructured high-energy cathode materials for advanced lithium batteries[J]. Nature Materials, 2012, 11(11): 942-7. |
[118] | GUO, W., YU, H., WANG, M., et al. Compositional gradient design of Ni-rich Co-poor cathodes enhanced cyclability and safety in high-voltage Li-ion batteries[J]. ACS Nano, 2025, 19(8): 8371-8380. |
[119] | SU, Y., CHEN, G., CHEN, L., et al. Exposing the {010} planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-rich Li[Ni0.8Co0.1Mn0.1]O2 microspheres[J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6407-6414. |
[120] | RYU, H.-H., PARK, K.-J., YOON, C. S., et al. Capacity fading of Ni-rich Li[NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?[J]. Chemistry of Materials, 2018, 30(3): 1155-1163. |
[121] | WEI, T.-Y., CHEN, C.-H., CHIEN, H.-C., et al. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials, 2010, 22(3): 347-351. |
[122] | XU, X., HUO, H., JIAN, J., et al. Radially oriented single-crystal primary nanosheets enable ultrahigh rate and cycling properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries[J]. Advanced Energy Materials, 2019, 9(15): 1803963. |
[123] | WANG, L., WU, B., MU, D., et al. Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674: 360-367. |
[124] | SPENCE, S. L., XU, Z., SAINIO, S., et al. Tuning the morphology and eectronic properties of single-crystal LiNi0.5Mn1.5O4-δ: exploring the Influence of LiCl–KCl molten salt flux composition and synthesis temperature[J]. Inorganic Chemistry, 2020, 59(15): 10591-10603. |
[125] | ZHENG, J., YAN, P., ESTEVEZ, L., et al. Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0.76Mn0.14Co0.10O2 cathodes for lithium-ion batteries[J]. Nano Energy, 2018, 49: 538-548. |
[126] | WU, Y., WU, H., DENG, J., et al. Insight of synthesis of single crystal Ni-rich LiNi1-x-yCoxMnyO2 cathodes[J]. Advanced Energy Materials, 2024, 14(11): 2303758. |
[127] | YU, W., OUYANG, C., WANG, J., et al. Single-crystal, highly Ni-rich LiNi0.9Co0.055Mn0.045O2 cathode material: spray pyrolysis synthesis and grain size regulation[J]. Inorganic Chemistry, 2025, 64(26): 12954-12965. |
[128] | ZHANG, Y., CUI, C., HE, Y., et al. The effect of drying methods on the structure and performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium-ion batteries[J]. Materials Chemistry and Physics, 2021, 262: 124269. |
[129] | YOO, Y.-W., KANG, C.-Y., KIM, H.-K., et al. Enhanced structure/interfacial properties of single-crystal Ni-rich LiNi0.92Co0.04Mn0.04O2 cathodes synthesized via LiCl-NaCl molten-salt method[J]. Energy & Environmental Materials, 2025, 8(1): e12778. |
[130] | LI, C., LIU, J., SU, Y., et al. Enhancing chemomechanical stability and high-rate performance of nickel-rich cathodes for lithium-ion batteries through three-in-one modification[J]. Energy Storage Materials, 2025, 74: 103893. |
[131] | ZHAOZHE YU, NBSP, QILIN TONG, et al. Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering[J]. Solar Energy Materials, 2022, 2: 200037. |
[1] | 谈秀雯, 李凌. 局部过热下锂电池热失控特性及其热管理研究[J]. 储能科学与技术, 2025, 14(9): 3521-3529. |
[2] | 陈峥, 胡竞元, 赵志刚, 申江卫, 夏雪磊, 魏福星. 双体系混装电池组热特性研究及风冷散热结构优化[J]. 储能科学与技术, 2025, 14(9): 3463-3475. |
[3] | 陈文艳, 贺瑞璘, 常建, 邓永红. 不同形态液态金属电极的储锂机制研究[J]. 储能科学与技术, 2025, 14(9): 3290-3300. |
[4] | 邓拓, 周海平, 刘煜, 刘畅, 李梓恺, 吴孟强. 化学气相沉积法制备硅碳负极的研究进展[J]. 储能科学与技术, 2025, 14(9): 3354-3372. |
[5] | 赵岩, 刘浩, 易宗琳, 李莉, 谢莉婧, 苏方远. FEC与VC在锂离子电池石墨负极界面行为研究[J]. 储能科学与技术, 2025, 14(9): 3249-3258. |
[6] | 林季锦, 刘倩, 曲涛, 李京鲲, 黄东永, 朱晓庆, 巨星. 锂离子电池储能系统浸没液冷的技术经济性分析[J]. 储能科学与技术, 2025, 14(9): 3622-3635. |
[7] | 封居强, 张成知, 陈雨杭. 基于数字孪生的高精度SOC和温度联合估计方法[J]. 储能科学与技术, 2025, 14(9): 3567-3580. |
[8] | 白晓宇, 筵亚静, 张志荣, 孔令丽. 复合石墨锂离子电池性能研究[J]. 储能科学与技术, 2025, 14(9): 3259-3268. |
[9] | 张磊. 锂离子电池储能电站的运行状态监测与评估[J]. 储能科学与技术, 2025, 14(9): 3538-3540. |
[10] | 包新宇, 孔祥栋, 吕桃林, 朱志成, 韩雪冰, 来鑫, 郑岳久, 孙涛. 基于产线大数据的电池内阻预测及快速分选方法[J]. 储能科学与技术, 2025, 14(9): 3541-3551. |
[11] | 杨斌, 杨军, 徐浪, 温浩伟, 刘登锋, 阮殿波. 电容型锂离子电池的球头压痕对其安全性研究[J]. 储能科学与技术, 2025, 14(8): 3090-3099. |
[12] | 张腾, 常国峰. 基于单体特征参数差异的电池组热特性和热一致性研究[J]. 储能科学与技术, 2025, 14(8): 3194-3206. |
[13] | 高蕾, 顾洪汇, 张益明, 黄伟, 陆海燕, 周琳, 顾梅嵘. 超高功率锂离子电池脉冲性能研究[J]. 储能科学与技术, 2025, 14(8): 2942-2949. |
[14] | 徐成善, 孙烨, 杨智凯, 赵明强, 李亚伦, 冯旭宁, 王贺武, 卢兰光, 欧阳明高. 储能锂离子电池系统热失控诱发电弧研究进展[J]. 储能科学与技术, 2025, 14(8): 3037-3050. |
[15] | 李鹏举, 陈晓宇, 谢佳, 沈佳妮, 贺益君. 锂离子电池功率状态预测方法研究进展[J]. 储能科学与技术, 2025, 14(8): 3028-3036. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||